iLearn: an integrated platform and meta-learner for
feature engineering and machine learning analysis and
modeling of DNA, RNA and protein sequence data

Zhen Chen'', Pei Zhao*', Fuyi Li®, Tatiana T. Marquez-Lago*°, André Leier*°, Jerico Revote®,
David R. Powell®, Tatsuya Akutsu®, Geoffrey 1. Webb’, A. Ian Smith?, Roger J. Daly®, Kuo-Chen
Chou®?, Jiangning Song™7-10-*

!School of Basic Medical Science, Qingdao University, 38 Dengzhou Road, Qingdao, 266021,
Shandong, China, “State Key Laboratory of Cotton Biology, Institute of Cotton Research of
Chinese Academy of Agri-cultural Sciences (CAAS), Anyang, 455000, China, *Biomedicine
Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University,
Melbourne, VIC 3800, Australia, “Department of Genetics, School of Medicine, University of
Alabama at Birmingham, USA, *Department of Cell, Developmental and Integrative Biology,
School of Medicine, University of Alabama at Birmingham, AL, USA, ’Bioinformatics Center,
Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan, 'Monash Centre for
Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800,
Australia, 8Gordon Life Science Institute, Boston, MA 02478, USA, °Key Laboratory for
Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for
Informational Biology, University of Electronic Science and Technology of China, Chengdu,
610054, China, '"ARC Centre of Excellence in Advanced Molecular Imaging, Monash
University, Melbourne, VIC 3800, Australia

Supplementary Material
Package Version: 1.0

10.

11.

12.

13.

Content

Installation

. Full Workflow of iLearn

Software Package Overview

Input Format of iLearn

Commonly Used Feature Descriptors for Nucleotide sequences
Commonly Used Feature Descriptors for Protein or Peptide sequences

Feature Analysis Using iLearn

. Predictor Construction Using iLearn

Performance Evaluation Strategy of iLearn
Online Web Server

Summary

Acknowledgements

References

Brief introduction

iLearn is a comprehensive Python-based toolkit, integrating feature extraction/calculation, feature
analysis (clustering, feature selection, normalization and dimension reduction), predictor
construction, best descriptor/model selection, ensemble learning and performance evaluation for
DNA, RNA and protein sequences. iLearn is capable of calculating and extracting a wide
spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature
descriptors for protein sequences, and also can be used to extract 6 major encoding schemes which
encompass 26 and 18 different types of feature descriptors for DNA and RNA sequences.
Developed from iFeature (1), iLearn also integrates six kinds of frequently-used feature clustering
algorithms, five feature selection algorithms, and three dimensionality reduction algorithms. Four
output feature formats are supported by iLearn, which can be directly used and processed in other
tools. Furthermore, five commonly used machine learning algorithms are provided, including
SVM (Support Vector Machine), RF (Random Forest), ANN (Artificial Neutral Network), KNN
(K-Nearest Neighbours) and LR (Logistic Regression). In order to facilitate users’ interpretability
of outcomes, the clustering and dimensionality reduction results generated by iLearn can be
further visualized in form of scatter diagrams, while the cross-validation result can be visualized in
the form of ROC and PRC curves. This makes iLearn a unique and powerful tool that greatly
facilitates feature generation, analysis, training and benchmarking of machine-learning models and
predictions.

1. Installation

iLearn 1s an open-source Python-based toolkit, which operates depending on the Python
environment (Python Version 3.0 or above) and can be run on multi-OS systems (such as
Windows, Mac and Linux operating systems). Before running iLearn, user should make sure all
the following packages are installed in their Python environment: sys, os, shutil, scipy, argparse,
collections, platform, math, re, numpy (1.13.1), sklearn (0.19.1), matplotlib (2.1.0), and pandas
(0.20.1). For convenience, we strongly recommended users to install the Anaconda Python 3.0
version (or above) in your local computer. The latter can be freely downloaded from
https://www.anaconda.com/download/.

2. Full Workflow of iLearn

Here, we provide step-by-step user instruction illustrating the full workflow of the iLearn toolkit
by running the example provided in the “examples” directory. iLearn includes sixteen main
programs, which can be divided into four groups (Table 1).

Table 1. The sixteen main programs in iLearn package.

Groups Programs Function

. . i Extracting 37 different types of feature descriptors for
Group 1 iLearn-protein-basic.py .
proteins sequences.

3

Extracting the 16 types of pseudo K-tuple reduced amino
iLearn-protein-PseKRAAC.py acid composition (PseKRAAC) feature descriptors for
protein sequences.

. i . Extracting 14 different types of feature descriptors for
iLearn-nucleotide-basic.py .
nucleotide sequences.

.) Extracting 6 different types of autocorrelation descriptors for
iLearn-nucleotide-acc.py .
nucleotide sequences.

. leotide.P Extracting 6 different types of pseudo-k-tuple composition
iLearn-nucleotide-Pse.
by descriptors for nucleotide sequences.

Group 2 iLearn-clustering.py Running the feature or sample clustering algorithms.
iLearn-feature-normalization.py Running the feature normalization algorithms
iLearn-feature-selectior.py Running the feature selection algorithms.
iLearn-dimension-reduction.py Running the dimension reduction algorithms.

Group 3 iLearn-ML-SVM.py Running the SVM algorithm.
iLearn-ML-RF.py Running the RF algorithm.
iLearn-ML-MLP.py Running the ANN algorithm.
iLearn-ML-LR.py Running the LR algorithm.
iLearn-ML-KNN.py Running the KNN algorithm.

Group 4 iLearn-descriptor-estimater.py Estimating the prediction ability for the specified descriptors
iLearn-auto-pipline.py Running the iLearn pipeline.

3. Software Package Overview

iLearn can generate a wide spectrum of 18 feature encoding schemes, encompassing a total of 53
different types of feature descriptors derived from protein or peptide amino acid sequences, and 42
different types of feature descriptors for nucleotide sequences. The 18 major encoding scheme
groups for protein sequences and peptides can be found in (1) and the 6 encoding scheme groups
for nucleotide sequences included in iLearn are summarized in Table 2 of the main manuscript.
Moreover, iLearn also integrates a variety of commonly used feature clustering, normalization,
selection, dimensionality reduction and predictor construction algorithms, which greatly facilitates
feature generation, importance analysis, model training and performance evaluation experiments.
We describe the detailed functions of iLearn below.

Feature descriptor extraction:

Generally, each type of feature descriptor can be calculated using the main programs
“iLearn-protein-basic.py”, “iLearn-protein-PseKRAAC.py”, “iLearn-nucleotide-basic.py”,
“iLearn-nucleotide-acc.py” and “iLearn-nucleotide-Pse.py” implemented in the iLearn toolkit.
Users are advised to specify the descriptor type by using the parameter " —-method” .

tcsh% python i1Learn-protein-basic.py --help

X Windows PowerShell — [m] x

PS D:\iLearn> python
usage: it's usage tip.

Generating various numerical representation schemes for protein sequences

optional arguments:
—help show this help message and exit
—file FILE input fasta file
—method |[AAC, EAAC, CKSAAP, DPC, DDE, TPC, binary, Kmer, GAAC, EGAAC, CKSAAGP, GDPC, GTPC, AAINDEX, ZSCALE, BLOSUM62, NMBroto, Moran, Geary, CTDC, CTDT, CTDD, CT
r1ad, KSCTr iad, SOCNumber, QSOrder, PAAC, APAAC, KNNprotein, KNNpeptide, PSSM, SSEC, SSEB, Disorder, DisorderC, DisorderB, ASA, TA}
the encoding type
—path FILEPATH data file path used for 'PSSM', 'SSE

‘Disord C) ', 'ASA' and 'TA' encodings

—order f{alphabetically, polarity, sideChainVolume, userDefined}
output or for of Amino Acid Composition (i.e. AAC
EAAC, CKSAAP, DPC, DDE, TPC) descriptors

——userDefinedOrder USERDEF INEDORDER
user defined output order for of Amino Acid
Compositien (i.e. AAC, EAAC, CKSAAP, DPC, DDE, TPC)
descriptors

—format [csv, tsv, svm, weka, tsv_1}
the encoding type

—out OUT the generated descriptor file

iLearn>

tcsh% python iLearn-protein-PseKRAAC.py --help

2 Windows PowerShell = O s

iLearn> python
it's usage tip

Generating PseKRAAC descriptors for protein sequences/peptides:

nal arguments:
, —help show this help message and exit
—file FILE input fasta file
—method |{typel, type2, type3A, type3B, typed, typeb, typebA, typebB, typebC, type7, type8, type?, typel0, typell, typel2, typel3, typeld, typels, typelb]
the descriptor type
—model| {g—gap, |ambda—correlation}
the model of the descriptor method, default is '
—ktuple {1,2,3} k—tuple peptide, default is 2
p_lambda {0,1,2,3,4,5,6,7,8,9]
the p value or lambda value for the 'g—gap’ model or
' |lambda—correlation’ model
—type TYPE the reduced amino acids cluster type
how show detatiled available "—type' value for each type
—format {csv, tsv, svm, weka, tsv_1}
the encoding type
the generated descriptor file

tcsh% python iLearn-nucleotide-basic.py --help

4 Windows PowerShell = O P

PS D:\iLearn> python
usage: it's usage tip

Generating various numerical representation schemes for nucleotide sequences

optional arguments:
= —help show this help message and exit

—file FILE input fasta file

—method | {Kmer, RCKmer, NAC, DNC, TNG, ANF, ENAG, binary, CKSNAP, NCP, PSTNPss, PSTNPds, EI IP, PseE| IP}
the encoding type

—format {csv, tsv, svm, weka, tsv_1}
the encoding type
the generated descriptor file

tcsh% python iLearn-nucleotide-acc.py --help

"4 Windows PowerShell = O X

python
it's usage tip.

Generating auto—correlation encoding for nucleotide sequences.

optional arguments:
~h, —help show this help message and exit
a FIE input fasta file
——method | {DAC, DCC, DACC, TAC, TCC, TACC}
the encoding method
—type [DNA, RNA} the nucleotide, default: DNA.
\G

The value of lag.
ex INDEX The indices file user choose. Default indices: DNA

dinucleotide: Rise, Roll, Shift, Slide, Tilt, Twist.
DNA trinucleotide: Dnase |, Bendability (DNAse). RNA:
Rise, Roll, Shift, Slide, Tilt, Twist.

di UDI The user—defined indices file.

all_index Choose all physico—chemical indices, default: False.

—format {csv, tsv, svm, weka, tsv_1}

the generatecd descr iptor file.

tcsh% python iLearn-nucleotide-Pse.py --help

"M Windows PowerShell = O X

IPS D:\iLearn> python
usage: it's usage tip.

Generating pseudo nucleic acid composition encoding for nucleotide sequences.

optional arguments:
=h, —help show this help message and exit
—=file FIIE input fasta file
—method [PseDNC, PseKNC, PCPseDNC, PCPseTNC, SCPseDNC, SCPseTNC}
the d type
—type [DNA, RNA} the nucleotide, default: DNA.
da LAMADAVALUE The value of lamada; default: 2
ht WEIGHT The value of weit default: 0.1
=r KMER The value of kmer; it works only with PseKNC method.
—index |INDEX The indices file user choose. Default indices: DNA
dinucleotide: Rise, Roll, Shift, Slide, Tilt, Twist.
DNA trinucleotide: Dnase |, Bendability (DNAse). RNA:
Rise, Roll, Shift, Slide, Tilt, Twist.
—udi UDI The user—defined indices file.
—all_index Choose all physico—chemical indices, default: False.
—format {csv, tsv, svm, weka, tsv_1}
the output format
—out OUT the generated descriptor file.
PS D:\ilLearn> 4

Feature clustering:

Use the following command to show the help information for all feature clustering algorithms in
the iLearn package:

tcsh% python iLearn-clustering.py --help

2 Windows PowerShell = O s

Learn> python
it's usage tip.

cluster for the generated numerical represention

optional arguments:
—h, —help show this help message and exit
—file FILE input encoding file
—method {kmeans, hcluster, apc, meanshift, dbscan}
select cluster method
—sof [sample, featurel]

cluster for sample or feature, default: sample
——nclusters NCLUSTERS

specify the cluster number for kmeans cluster metheod.
default: 3
output file

Feature normalization:

Use the following command to show the help information for all feature normalization algorithms
in the iLearn package:

tcsh% python iLearn-feature-normalization.py --help

6

EF Windows PowerShell = [m] *

5 python iLearn—feature—normalization.py —help
ge: it's usage tip.

feature vector normalization

optional arguments:
~h, —help show this help message and exit
—file FILE input encoding file format
—format {csv, tsv, svm, wekal
the encoding type
—method {ZScore, MinMax]
select feature normalization method
—out QUT file with normalized features vectors
PS D:\ilLearn> .

Feature selection:

Use the following command to show the help information for the feature selection algorithms
implemented in the iLearn package:

tcsh% python iLearn-feature-selectior.py --help

= Windows PowerShell - [m] X

\iLearn> python
it's usage tip.

feature selection

optional arguments:
—h, —help show this help message and exit
—file FILE input encoding file format
—format {csv, tsv, svm, weka}
the encoding type
—method [CHI2, |G, MIC, pearsonr, Fscore}
select cluster methed
t OUT output file
iLearn>

Dimension reduction:

Use the following command to show the help information for the dimension reduction algorithms
implemented in the iLearn package:

tcsh% python iLearn-dimension-reduction.py --help

4 Windows PowerShell = | X

PS C:\iFeature—in—one> python iFeature—dimension-reduction.py —help
usage: it's usage tip

dimension reduction

optional arguments:
-h, —help show this help message and exit
—file: FILE input encoding file format
—format [csv, tsv, svm, wekal
the encoding type
—method {pca, Ida, tsne}
select dimension reduction method
——ncomponents NCOMPONENTS
number of n components, default 2
——out OUT output file
PS C:\iFeature—in—one>

Descriptor construction algorithms:

Use the following command to show the help information for machine learning algorithms
implemented in the iLearn package:

tcsh% python iLearn-ML-SVM.py --help

L% Windows PowerShell = m] X

python
t's usage tip.

Training SYM model

optional arguments:
—h, help show this help message and exit
ain TRAIN input training coding file
—indep |NDEP independent coding file
—format [tsv,svm,csv,weka}
input file format (default tab format)
—kernel [linear,poly, rbf, sigmoid}
SYM kernel type (default rbf kernel)
—auto auto optimize parameters efalult: False)
atch BATCH random select part atch * sampl samp les for
parameters optimization
iegree DEGREE set degree in polynomial kernel function (default 3)
amma GAMMA set gamma in polynomial/rbf/sigmoid kernel function
(default 1,
ef0 COEFOQ t coefQ in polynomial/rbf/sigmoid kernel function
efault 0)
—cost COST set the parameter cost value (default 1)
—fold FOLD n-fold cross validation mode (default 5-fold cross—
validation, 1 means jack—knife cross—validation)
—ou set prefix for output score file

tcsh% python iLearn-ML-RF.py --help

2 Windows PowerShell - [m] X

> python
t's usage tip.

itraining RF model

optional argument
—h, —help show this help message and exit
—train TRAIN input training coding file
indep INDEP independent coding file

—format [tsv, svm, csv, weka}

input file format (default tab forma
ees N_TREES the number of trees in the for

n-fold cross validation mode (default 5-fold cross—
validation, 1 means jack—knife cross—validation)
set prefix for output score file

tcsh% python iLearn-ML-KNN.py --help

"X Windows PowerShell = O X

‘n> python
t's usage tip

training KNN model

optional arguments:
—h, —help show this help message and exit
—train TRAIN input training coding file
dep |NDEP independent coding file
ormat {tsv, svm, csv, weka}
input file format (default tsv forma
the K nearest neighbour valu default: 3
n-fold cross validation mode (default 5-fold cross—
validation, 1 means jack—knife cross—validation)
set prefix for output score file

tcsh% python iLearn-ML-LR.py --help

4 Windows PowerShell = (m] x
PS D:\iLearn> python
usage: it's usage tip

training LR model

optional arguments:
show this help message and exit
input training codi file

ndep |NDEP independent coding file
ormat {tsv, svm, csv, wekal
input file format (default tsv forma
—fold FOLD n—fold cross validation mode (default 5—fold cr
validation, 1 means jack—knife cross—validation)
—out OUT set prefix for output score file

PS

tcsh% python iLearn-ML-MLP.py --help
8

23 Windows PowerShell — O X

python iLearn-ML-MLP. py —help
e tip

training MLP model

optional arguments:
—-h, —help show this help message and exit
—+train TRAIN input training co
—indep INDEP independent coding file
—format [tsv, svm, csv, wekal i
input file format (default tab format)
—hidden HIDDEN hidden layer size, the i-th element represents the
number of neurons in the ith hidden layer
—lost {lbfgs, sgd, adam}
The lost function
—activation {identity, logistic, tanh, relu}
The activation function.
—epochs EPOCHS Maximum number of iterations
—r LR The learning rate
—fold FOLD n—fold cross validation mode (default 5-fold cross—
validation, 1 means jack—knife cross—validation)
—out OUT set prefix for output score file
PS D:\iLearn>

Descriptor evaluater:
Use the following command to show the help information for predictors prediction ability
evaluation implemented in the iLearn package:

A Windows PowerShell = [m] x

> python ilLearn—descriptor—estimater.py — ~
ge tip

running the ilLearn pipeline

optional arguments:
—h, —h show this help m
—config CONFIG the config file

Ensemble learning:
Use the following command to show the help information for ensemble learning implemented in
the iLearn package:

24 Windows PowerShell gt o o

python iLearn—auto—pipline. py
ge tip.

running the iLearn pipeline

optional arguments:
~h, —help show this help message and exit
—config CONFIG the config file

4. The Input format of iLearn

The input for iLearn is a set of DNA, RNA or protein sequences in a special FASTA format. The
FASTA header consists of three parts: part 1, part 2 and part 3, which are separated by the symbol
‘> (Figure 2 in the main manuscript). Part 1 is the sequence name. Part 2 is the sample category
information, which can be filled with any integer. For instance, users may use 1 to indicate the
positive samples and -1 or 0 to represent the negative samples for a binary classification task, or
use 0, 1, 2, ... to represent the different class in multiclass classification tasks. Part 3 indicates the
role of the sample, where e.g. “training” would indicate that the corresponding sequence would be
used as the training set for K-fold validation test, and “testing” that the sequence would be used as
the independent set for independent testing.

5. Commonly Used Feature Descriptors for nucleotide sequences

Let us assume that a nucleotide sequence with L amino acid residues can be generally represented
as {Ri, R2, ..., R.}, where R; represents the base at the i-th position in the sequence. The following
commonly used feature descriptors can be calculated and extracted using iLearn.

5.1 Kmer

For kmer descriptor, the DNA or RNA sequences are represented as the occurrence frequencies of
k neighboring nucleic acids, which has been successfully applied to human gene regulatory
sequence prediction (2) and enhancer identification (3). The Kmer (k=3) descriptor can be
calculated as:

0]
©

f@) =

where N(?) is the number of kmer type ¢, while N is the length of a nucleotide sequence.

t € {AAA, AAC, AAG, ..., TTT}

Use the following command to extract the Kmer feature descriptors:
tcsh% python i1Learn-nucleotide-basic.py --Tile
examples/DNA_training.txt --method Kmer --format svm

The parameters of iLearn-nucleotide-basic.py are:
* file: the input sequence file with FASTA format
* method: the descriptor type
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

Advanced usage:
tcsh% python descnucleotide/Kmer . py --file examples/DNA_training.txt
--kmer 3 --upto --normalize --format csv

The parameters of Kmer.py are:
* kmer: the value of kmer, it should be an integer larger than 0, default is 2
* ypto: with this parameter the program will generate all the kmers: 1mer, 2mer, ..., kmer
* normalize: with this parameter the final feature vector will be normalized based on the
total occurrences of all kmers
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported

5.2 Reverse Compliment Kmer (RCKmer)

The reverse compliment kmer (2,4) is a variant of kmer descriptor, in which the kmers are not
expected to be strand-specific. For instance, for a DNA sequence, there are 16 types of 2-mers (i.e.
'AA', 'AC, 'AG, 'AT, 'CAY, 'CCY, 'CGY 'CTY, 'GA, 'GCY, 'GGY, 'GTY, 'TA', 'TCY, 'TGY, 'TT"), ‘TT’ 1s
reverse compliment with ‘AA’. After removing the reverse compliment kmers, there are only 10
distinct kmers in the reverse compliment kmer approach ('AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG',
'GA', 'GC', 'TA").

10

Use the following command to extract the RCKmer feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --Tile
examples/DNA_training.txt --method RCKmer --format svm

Advanced usage:
tcsh% python descnucleotide/RCKmer.py --file
examples/DNA_training.txt --kmer 2 --upto --normalize --format csv

The parameters of RCKmer.py are:
* fkmer: the value of kmer, it should be an integer larger than 0, default is 2
* upto: with this parameter the program will generate all the kmers: Imer, 2mer, ..., kmer
* normalize: with this parameter the final feature vector will be normalized based on the
total occurrences of all kmers
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported

5.3 Nucleic Acid Composition (NAC)

The Nucleic Acid Composition (NAC) encoding calculates the frequency of each nucleic acid type
in a nucleotide sequence. The frequencies of all 4 natural nucleic acids (i.e. “ACGT or U”) can be
calculated as:

f® =" 1 € {ACGTU)

where N(¢) is the number of nucleic acid type ¢, while N is the length of a nucleotide sequence.

Use the following command to extract the NAC feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method NAC

5.4 Di-Nucleotide Composition (DNC)
The Di-Nucleotide Composition gives 16 descriptors. It is defined as:

N
D(r,s) = m 151’ r,s €{A,C,G,T(U)}

where N5 is the number of di-nucleotide represented by nucleic acid types r and s.

Use the following command to extract the DNC feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method DNC

5.5 Tri-Nucleotide Composition (TNC)
The Tri-Nucleotide Composition gives 64 descriptors. It is defined as:

N
D(r,s, t) = N ftz, r,s,t €{AC,G TU)}

where N is the number of tri-nucleotide represented by nucleic acid types 7, s and ¢.

Use the following command to extract the TNC feature descriptors:

11

tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method TNC

5.6 Enhanced Nucleic Acid Composition (ENAC)

The Enhanced Nucleic Acid Composition (ENAC) calculates the NAC based on the sequence
window of fixed length (the default value is 5) that continuously slides from the 5’ to 3’ terminus
of each nucleotide sequence and can be usually applied to encode the nucleotide sequence with an
equal length. For more information of this approach, please refer to (1).

Use the following command to extract the ENAC feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method ENAC

Advanced usage:
tcsh% python descnucleotide/ENAC.py --file examples/DNA_training.txt
--slwindow 10

The parameters of RCKmer.py are:
* slwindow: the sliding window of ENAC descriptor, it should be an integer larger than 0,
default is 5

5.7 binary

In the Binary encoding, each amino acid is represented by a 4-dimensional binary vector, e.g. A is
encoded by (1000), C is encoded by (0100), G is encoded by (0010) and T(U) is encoded by
(0001), respectively. This encoding scheme is often used to encode nucleotide sequence with an
equal length.

Use the following command to extract the binary feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method binary

5.8 Composition of k-spaced Nucleic Acid Pairs (CKSNAP)
The CKSNAP feature encoding calculates the frequency of nucleic acid pairs separated by any &
nucleic acid (k=0, 1, 2, ..., 5. The default maximum value of k£ is 5) . Taking k£ = 0 as an example,
there are 16 0-spaced nucleic acid pairs (i.e. 'AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA',
'GC', 'GG', 'GT', 'TA", 'TC', 'TG', 'TT"). Then, a feature vector can be defined as:
Ngg Nac Ngg Nrr)

Ntotal ’ Ntotal ' Ntotal o Ntotal L6
The value of each descriptor denotes the composition of the corresponding nucleic acid pair in the
nucleotide sequence. For instance, if the nucleic acid pair AA appears m times in the nucleotide
sequence, the composition of the nucleic acid pair AA is equal to m divided by the total number of
0-spaced nucleic acid pairs (M) in the nucleotide sequence. For k=0, 1, 2, 3, 4 and 5, the value
of Nwtar is P—1, P -2, P -3, P-4, P—5 and P — 6 for a nucleotide sequence of length P,
respectively.

12

Use the following command to extract the CKSNAP feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method CKSNAP

Advanced usage:
tcsh% python descnucleotide/CKSNAP.py --fTile
examples/DNA_training.txt --gap 3

The parameters of CKSNAP.py are:
* gap: the k-space value for CKSNAP descriptor, it should be an integer larger than 0,
default is 5

5.9 Nucleotide Chemical Property (NCP)

There are four different kinds of nucleotides in RNA, i.e., adenine (A), guanine (G), cytosine (C)
and uracil (U). Each nucleotide has different chemical structure and chemical binding. The four
kinds of nucleotides can be classified into three different groups in terms of these chemical
properties (Table 1).

Table 1. Chemical structure of each nucleotide (5).

Chemical property Class Nucleotides
Ring Structure llzgznmeidine 2: S
Functional Group I'z:;no g: [C}
Hydrogen Bond f’&‘[fre(:;(g I(ia’ g

Based on chemical properties, A can be represented by coordinates (1, 1, 1), C can be represented
by coordinates (0, 1, 0), G can be represented by coordinates (1, 0, 0), U can be represented by
coordinates (0, 0, 1).

Use the following command to extract the NCP feature descriptors:
tcsh% python i1Learn-nucleotide-basic.py --Tile
examples/DNA_training.txt --method NCP

5.10 Accumulated Nucleotide Frequency (ANF)

The Accumulated Nucleotide Frequency (ANF) encoding (5) include the nucleotide frequency
information and the distribution of each nucleotide in the RNA sequence, the density d; of any
nucleotide si at position i in RNA sequence by the following formula:

l
_ 1 _ (1 ifsi=q
d; = |si|;f(si)' f@) = {

0 other case

where / is the sequence length, |Si| is the length of the i-th prefix string {s;, s2, ..., si} in the
13

sequence, g € {A, C, G or U}. Suppose an example sequence “UCGUUCAUGG”. The density
of ‘U’ is 1 (1/1), 0.5 (2/4), 0.6 (3/5), 0.5 (4/8) at positions 1, 4, 5, and 8, respectively. The density
of ‘C’ is 0.5 (1/2), 0.33 (2/6) at positions 2 and 6, respectively. The density of ‘G’ is 0.33 (1/3),
0.22 (2/9), 0.3 (3/10) at positions 3, 9, and 10, respectively. The density of ‘A’ is 0.14 (1/7) at
position 7.

By integrating both the nucleotide chemical property and accumulated nucleotide information, the
sample sequence “UCGUUCAUGG” can be represented by {(0, 0, 1, 1), (0, 1, 0, 0.5), (1, 0, 0,
0.33), (0,0, 1, 0.5), (0,0, 1, 0.6), (0, 1, 0, 0.33), (1, 1, 1, 0.14), (0, 0, 1, 0.5), (1, 0, 0, 0.22), (1, 0, O,
0.3)}. By doing so, not only the chemical property was considered, but also the long-range
sequence order information was incorporated. Therefore, the samples in the benchmark dataset
were encoded in terms of both nucleotide chemical property and nucleotide densities.

Use the following command to extract the ANF feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --Tile
examples/DNA_training.txt --method ANF

5.11.1 Position-specific trinucleotide propensity based on single-strand (PSTNPss)
The Position-specific trinucleotide propensity based on single-strand (PSTNPss) (6,7) using a
statistical strategy based on single-stranded characteristics of DNA or RNA. There are 4° =64
trinucleotides: AAA, AAC, AAG, ..., TTT(UUU). So, for an L bp sample, its details of the
trinucleotides position specificity can be expressed by the following 64 x (L-2) matrix:

Zl,l Zl,Z Z1,L—2

| Z21 Z22 T Z2L-2
7=) . .

Zea1 Zea2 " ZeaL-2

where

z;; = F*(3men;|j) — F~(Bmer|)),i = 1,2,..,64;j = 1,2,...L — 2
F*(3mer;|j) and F~(3mer;|j) denote the frequency of the i-th trinucleotide (3mer;) at the j-th
position appear in the positive (S*) and negative (S™) data sets, respectively. In the formula, 3mer:
equals AAA,3mer2 equals AAC, ..., 3meres equals TTT.
Therefore, the sample can be expressed as:

S = [@1,(2)2; ey Q)L—Z]T

where T is the operator of transpose and ¢. was defined as follows:
Zyy, When NyNy 1Ny, = AAA

0 = Zyy, When NyN, 1N, = AAG
u— :

Z64,ur Wh.en NuNu+1Nu+2 s TTT

Use the following command to extract the PSTNPss feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method PSTNPss

5.11.2 Position-specific trinucleotide propensity based on double-strand (PSTNPss)
14

Feature Position-specific trinucleotide propensity based on double-strand (PSTNPss) (6,7) using a
statistical strategy based on double-stranded characteristics of DNA according to complementary
base pairing, so they have more evident statistical features. At this point, we deem A and T as
identical, the same to C and G. Thus, for every sample, it can be converted into a sequence
contained A and T only.

Use the following command to extract the PSTNPds feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method PSTNPds

5.12.1 Electron-ion interaction pseudopotentials of trinucleotide (EIIP)

Nair (8) came up with electron-ion interaction pseudopotentials (EIIP) value of nucleotides A, G,
C, T (A: 0.1260, C: 0.1340, G: 0.0806, T:0.1335). The EIIP directly use the EIIP value represent
the nucleotide in the DNA sequence. Therefore, the dimension of the EIIP descriptor is the length
of the DNA sequence.

Use the following command to extract the EIIP feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method EIIP

5.12.2 Electron-ion interaction pseudopotentials of trinucleotide (PseEIIP)
In these encoding, let EIIPA, EIIPt, EIIPG, and EIIPc denote the EIIP values of nucleotides A, T, G
and C, respectively. Then, the mean EIIP value of trinucleotides in each sample to construct
feature vector, which can be formulated as:

V = [EIPyan " fana EUPypc * fanc, - ENPrrr - fro7]
Where fy: is the normalized frequency of the i-th trinucleotide, EIIPxy: = EIIPx+ EIIPy+ EIIP:
expresses the EIIP value of one trinucleotide and X, Y, Z€ [A, C, G, T]. Obviously, the
dimension of vector V'is 64.

Use the following command to extract the PseEIIP feature descriptors:
tcsh% python iLearn-nucleotide-basic.py --file
examples/DNA_training.txt --method PseEIIP

5.13 Autocorrelation

The Autocorrelation encoding (9) can transform the nucleotide sequences of different lengths into
fixed-length vectors by measuring the correlation between any two properties. Autocorrelation
encoding can generate two kinds of variables (i.e. The autocorrelation (AC) between the same
property, and the cross-covariance (CC) between two different properties). There are six types of
autocorrelation encodings, including dinucleotide-based auto covariance = (DAC),
dinucleotide-based cross covariance (DCC), dinucleotide-based auto-cross covariance (DACC),
trinucleotide-based auto covariance (TAC), trinucleotide-based cross covariance (TCC), and
trinucleotide-based auto-cross covariance (TACC). Users can run ‘iLearn-nucleotide-acc.py’ to get
these six types of encodings.

15

The parameters of iLearn-nucleotide-acc.py are:

* file: the input sequence file with FASTA format

* method: the descriptor type (select from DAC, DCC, DACC, TAC, TCC, TACC)

* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported

* out: the output file name

* type: the nucleotide type (DNA or RNA), default is DNA

* lag: an integer larger than or equal to 0 and less than or equal to L-2

* index: the physicochemical indices selection file, there are 148 physicochemical
dinucleotides indices and 12 trinucleotides indices for DNA sequence (Table 2 & Table
3) and 22 physicochemical dinucleotides indices for RNA sequence (Table 4). If this
parameter is not specified, the default physicochemical indices will be used. The default
DNA dinucleotide indices are: Rise, Roll, Shift, Slide, Tilt, Twist, the default DNA
trinucleotide indices are: ‘Dnase I’, ‘Bendability (DNAse)’. And the default RNA
dinucleotide indices are Rise (RNA), Roll (RNA), Shift (RNA), Slide (RNA), Tilt(RNA),

Twist(RNA). The file should be written as follows:

Rise
Roll
Shift
Slide
Tilt

Twist

* udi: with this option, the users can use their own indices to generate the feature vector.

* all index: with this option, all the physicochemical indices will be used to generate the

feature vector. Its default value is False.

Table 2. The names of the 148 physicochemical dinucleotides indices for DNA.

Base stacking

Protein induced deformability

B-DNA twist

Propeller twist

Duplex stability:(freeenergy)

Duplex tability(disruptenergy)

Protein DNA twist

Stabilising energy of Z-DNA

Aida_BA_transition

Breslauer_dS

Electron_interaction

Hartman_trans_free_energy

Lisser_BZ_transition

Polar_interaction

SantaLucia_dG

Sarai_flexibility Stability Stacking_energy Sugimoto_dS Watson-Crick_interaction
Twist Shift Slide Rise Twist stiffness

Tilt stiffness Shift rise Twist_shift Enthalpyl Twist_twist

Shift2 Tilt3 Tiltl Slide (DNA-protein complex)1 Tilt_shift

Twist_tilt Roll_rise Stacking energy Stacking energyl Propeller Twist

Rollll Rise (DNA-protein complex) Roll2 Roll3 Rolll

Slide_slide Enthalpy Shift_shift Flexibility_slide Minor Groove Distance
Rise (DNA-protein complex)1 Roll (DNA-protein complex)1 Entropy Cytosine content Major Groove Distance
Twist (DNA-protein complex) Purine (AG) content Tilt_slide Major Groove Width Major Groove Depth

Free energy6

Free energy7

Free energy4

Free energy3

Free energyl

Twist_roll

Flexibility_shift

Shift (DNA-protein complex)1

Thymine content

Tip

16

Keto (GT) content Roll stiffness Entropyl Roll_slide Slide (DNA-protein complex)

Twist2 Twist5 Twist4 Tilt (DNA-protein complex)1 Twist_slide

Minor Groove Depth Persistance Length Rise3 Shift stiffness Slide3

Slide2 Slidel Risel Rise stiffness Mobility to bend towards minor
groove

Dinucleotide GC Content A-philicity Wedge DNA denaturation Bending stiffness

Free energy5

Breslauer_dG

Breslauer_dH

Shift (DNA-protein complex)

Helix-Coil_transition

Ivanov_BA_transition Slide_rise SantaLucia_dH SantaLucia_dS Minor Groove Width
Sugimoto_dG Sugimoto_dH Twistl Tilt Roll
Twist7 Clash Strength Roll_roll Roll (DNA-protein complex) Adenine content
Direction Probability contacting | Roll_shift Shift_slide Shiftl

nucleosome core
Tilt4 Tilt2 Free energy8 Twist (DNA-protein complex)1 Tilt_rise
Free energy?2 Stacking energy?2 Stacking energy3 Rise_rise Tilt_tilt
Roll4 Tilt_roll Minor Groove Size GC content Inclination
Slide stiffness Melting Temperaturel Twist3 Tilt (DNA-protein complex) Guanine content
Twist6 Major Groove Size Twist_rise Rise2 Melting Temperature
Free energy Mobility to bend towards major | Bend

groove

Table 3. The names of the 12 physicochemical trinucleotides indices for DNA.

Dnase I

Bendability (DNAse)

Bendability (consensus)

Trinucleotide GC Content

Nucleosome positioning

Consensus_roll

Consensus-Rigid

Dnase I-Rigid

MW-Daltons

MW-kg

Nucleosome

Nucleosome-Rigid

Table 4. The names of the 22 physicochemical dinucleotides indices for RNA.

Shift (RNA)

Hydrophilicity (RNA)

Hydrophilicity (RNA)

GC content

Purine (AG) content

Keto (GT) content

Adenine content

Guanine content

Cytosine content

Thymine content

Slide (RNA) Rise (RNA) Tilt (RNA) Roll (RNA) Twist (RNA)
Stacking energy (RNA) Enthalpy (RNA) Entropy (RNA) Free energy (RNA) Free energy (RNA)
Enthalpy (RNA) Entropy (RNA)

5.13.1 Dinucleotide-based Auto Covariance (DAC)

The Dinucleotide-based Auto Covariance (DAC) encoding (9) measures the correlation of the
same physicochemical index between two dinucleotide separated by a distance of lag along the
sequence. The DAC can be calculated as:

L-lag-1

DAC(u: lag) = Z ((Pu(RiRi+1) - ﬁu)(Pu(RiHagRiHag+1) - P_u)/(l‘ - lag - 1))

where u is a physicochemical index, L is the length of the nucleotide sequence, P,(R;R;;;) is the
numerical value of the physicochemical index u for the dinucleotide RiRi+ at position i, P, is the
average value for physicochemical index u along the whole sequence:

17

L-1
= Ru(RiRi) /L -1
=1

The dimension of the DAC feature vector is N>XLAG, where N is the number of physicochemical
indices and LAG is the maximum of lag (lag =1, 2, ..., LAG).

Use the following command to extract the DAC feature descriptors:
tcsh% python iLearn-nucleotide-acc.py --file
examples/DNA_training.txt --method DAC --type DNA --lag 5

5.13.2 Dinucleotide-based Cross Covariance (DCC)

The Dinucleotide-based Cross Covariance (DCC) encoding (9) measures the correlation of two
different physicochemical indices between two dinucleotides separated by /ag nucleic acids along
the sequence. The DCC encoding is calculated as:

L-lag-1
DCC(ul,uz, lag) = Z (Pul (RiRi+1)) ((Rl+lag L+lag+1) puz)/(L - lag - 1)
i=1
where u; and u2 are different physicochemical indices, L is the length of the nucleotide sequence,

P, (R;R;1) is the numerical value of the physicochemical index u. for the dinucleotide RiRi+; at

position 7, Pua is the average value for physicochemical index u, along the whole sequence:

L-1
= P (RiRsu) /L = 1)
=1

The dimension of the DCC feature vector is NX(N-1) XLAG, where N is the number of
physicochemical indices and LAG is the maximum of lag (lag =1, 2, ..., LAG).

Use the following command to extract the DCC feature descriptors:
tcsh% python iLearn-nucleotide-acc.py --file
examples/DNA_training.txt --method DCC --type DNA --lag 5

5.13.3 Dinucleotide-based Auto-Cross Covariance (DACC)

The Dinucleotide-based Auto-Cross Covariance (DACC) encoding (9) is a combination of DAC
and DCC encoding. Thus, the dimension of the DACC encoding is NXNXLAG, where N is the
number of physicochemical indices and LAG is the maximum of the lag (lag=1, 2, ..., LAG).

Use the following command to extract the DACC feature descriptors:
tcsh% python iLearn-nucleotide-acc.py --file
examples/DNA_training.txt --method DACC --type DNA --lag 5

5.13.4 Trinucleotide-based Auto Covariance (TAC)
The Trinucleotide-based Auto Covariance (TAC) encoding measures the correlation of the same
physicochemical index between trinucleotides separated by lag nucleic acids along the sequence,

18

and can be calculated as:
L-lag-2
TAC(lag: u) = Z (Pu(RiRi+1Ri+2) - pu)(Pu(Ri+lagRi+lag+1Ri+lag+2) - pu)/(L - lag
i=1
-2)

where u is a physicochemical index, L is the length of the nucleotide sequence,P, (R;R;;1R; ;) is
the numerical value of the physicochemical index u for the trinucleotide RiRi+/Ri+2 at position i,
P, is the average value for physicochemical index u along the whole sequence:

Py = PuRiRisiRis2) /(L —2)
j=1

The dimension of the TAC feature vector is NXLAG, where N is the number of physicochemical
indices and LAG is the maximum of lag (lag =1, 2, ..., LAG).

Use the following command to extract the TAC feature descriptors:
tcsh% python iLearn-nucleotide-acc.py --Tile
examples/DNA_training.txt --method TAC --type DNA --lag 5

5.13.5 Trinucleotide-based Cross Covariance (TCC)

The Trinucleotide-based Cross Covariance (TCC) encoding measures the correlation of two
different physicochemical indices between two trinucleotides separated by lag nucleic acids along
the sequence. The TCC encoding can be calculated as:

DCC(uIJ Uy, la'g)
L-lag-2

Z (Pul(RiRi+1Ri+2))((Rl+lag L+lag+1Rl+lag+2) puz)/(L
i=1

—lag — 2)
where u; and u2 are different physicochemical indices, L is the length of the nucleotide sequence,
R;R;;1R;, is the numerical value of the physicochemical index u, for the dinucleotide RiR:+Ri+2

at position 7, Pua is the average value for physicochemical index u, along the whole sequence:

L-1
P =) Pu(RiRjiaRys2) /(L = 2)
=

The dimension of the DCC feature vector is NX(N-1) X LAG, where N is the number of
physicochemical indices and LAG is the maximum of lag (lag =1, 2, ..., LAG).

Use the following command to extract the DCC feature descriptors:
tcsh% python iLearn-nucleotide-acc.py --Tile
examples/DNA_training.txt --method TCC --type DNA --lag 5

5.13.6 Trinucleotide-based Auto-Cross Covariance (TACC)
Like DAC encoding, the Trinucleotide-based Auto-Cross Covariance (TACC) encoding (9) is a
combination of TAC and TACC encoding. Thus, the dimension of the TACC encoding is N X N X

19

LAG, where N is the number of physicochemical indices and LAG is the maximum of the lag (lag
=1,2,...,LAG).

Use the following command to extract the TACC feature descriptors:
tcsh% python iLearn-nucleotide-acc.py --Tile
examples/DNA_training.txt --method TACC --type DNA --lag 5

5.14 Pseudo Nucleic Acid Composition (PseNAC)

The Pseudo Nucleic Acid Composition (PseNAC) encodings consider both the local
sequence-order information and long-range sequence-order effects (9). Six types of PseNAC
encodings including dinucleotide composition (PseDNC), pseudo k-tuple nucleotide composition
(PseKNC), parallel correlation pseudo dinucleotide composition (PC-PseDNC), parallel
correlation pseudo trinucleotide composition (PC-PseTNC), series correlation pseudo dinucleotide
composition (SC-PseDNC), and series correlation pseudo trinucleotide composition (SC-PseTNC)
can be calculated by the ‘iLearn-nucleotide-Pse.py’ in iLearn package.

The parameters of iLearn-nucleotide-pse.py are:
* file: the input sequence file with FASTA format
* method: the descriptor type (select from PseDNC, PseKNC, PCPseDNC, PCPseTNC,
SCPseDNC, SCPseTNC)
format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name
* fype: the nucleotide type (DNA or RNA), default is DNA
* lamada: an integer larger than or equal to 0 and less than or equal to L-2
* weight: the weight factor ranged from O to 1. Its default value is 0.05
* fkmer: the value of kmer, it works only with PseKNC
* index: the physicochemical indices selection file, please refer to Table 2-4 for the names
of the physicochemical dinucleotides or trinucleotides indices for DNA and RNA.

5.14.1 Pseudo Dinucleotide Composition (PseDNC)

The Pseudo Dinucleotide Composition (PseDNC) encoding (10) incorporate contiguous local
sequence-order information and the global sequence-order information into the feature vector of
the nucleotide sequence. The PseDNC encoding is defined:

D= [dli d2' T d16' d16+1' T d16+1' R d16+l]T

where
(— Ji — (1<k<16)
d. = 4 i=1fi + WZ]‘:lej
' 55 Woets o 7<k<1640)
i=1fi WZj:l 0;
where fi (k=1, 2, ..., 16) is the normalized occurrence frequency of dinucleotide in the nucleotide
sequence, A represent the highest counted rank (or tie) of the correlation along the nucleotide
sequence, w is the weight factor ranged from 0 to 1, and 6; (j =1,2, ..., A) is the j-tier correlation

factor and is defined:

20

1 _
(91 = mezlz @(RLRL+1’ Ri+1Ri+2)
1 _
92 — mz%;f @(RiRi-I-ll Ri+2Ri+3)
1 _
{ 6= m2f=f9(RiRi+1, Riy3Rivs) (A<L)

L-1-2

1
k9/1 R Z O(RiRi+1, RivaRiva+1)
i=
where the correlation function is defined:
1
O(RiRi+1, Ri+1Rj+1) = ;Z[Pu(RiRHl) — P,(RjRj+1)]?
u=1

where u is the number of physicochemical indices. Six indices (i.e. 'Rise', 'Roll', 'Shift', 'Slide’',
'Tilt', "Twist') in Table 2 and six indices in Table 4 (i.e. 'Rise (RNA)', 'Roll (RNA)', 'Shift (RNA)',
'Slide (RNA)', 'Tilt (RNA)', 'Twist (RNA)') were set as the default indices for DNA and RNA
sequences, separately. P,(R;R;;;) is the numerical value of the wu-th (u=1, 2, ..., u)

physicochemical index of the dinucleotide R;R;,; at position i and Pu(RjRj+1) represents the

corresponding value of the dinucleotide R;R;,; at position ;.

Use the following command to extract the PseDNC feature descriptors:

tcsh% python iLearn-nucleotide-Pse.py --Tile
examples/DNA_training.txt --method PseDNC --type DNA --lamada 2
--weight 0.1

5.14.2 Pseudo k-tupler Composition (PseKNC)
The Pseudo A-tupler Composition (PseKNC) encoding (11) incorporate the k-tuple nucleotide
composition, which can be defined as:
D =[dy,dy, ..., dyk,dykyq, ..., d4k+A]T
where

(" Ju ——, (1<su<4)
Yo fi t+ WZj=1 6;
WOy (4% <u <4k 4 1)

kZ?Lfi + WZ%=1 6

where A is the number of the total counted ranks (or tiers) of the correlations along a nucleotide

sequence; fu (u=1,2,...,4%) is the frequency of oligonucleotide that is normalized to Z?:l fi=1,w

is the factor, and 6 is defined:

21

L—j-1
1 .
6, = I=i-1 z O(RiRi+1, RisjRirj+1), G=12,..,A<L)

i=1
The correlation function Q(RiRiH, RiyjRiy j+1) is defined as:

1 7
O(RiRi+1, RivjRiyj+1) = ;Z[Pv(RiRHl) — Py(Ri4jRitjs1)]?
v=1
where u is the number of physicochemical indices. Six indices (i.e. 'Rise', 'Roll', 'Shift', 'Slide’',
'Tilt', "Twist') in Table 2 and six indices in Table 4 (i.e. 'Rise (RNA)', 'Roll (RNA)', 'Shift (RNA)',
'Slide (RNA)', 'Tilt (RNA)', 'Twist (RNA)') were set as the default indices for DNA and RNA
sequences, separately. P,(R;R;;;) is the numerical value of the v-th (v=1, 2, ...,)

physicochemical index of the dinucleotide R;R;,; at position i and P,,(Rj+ jRiy j+1) represents

the corresponding value of the dinucleotide R;;;R;; ;1 at position ij.

Use the following command to extract the PseKNC feature descriptors:

tcsh% python iLearn-nucleotide-Pse.py --Tile
examples/DNA_training.txt --method PseKNC --type DNA --lamada 2
--weight 0.1 --kmer 3

5.14.3 Parallel Correlation Pseudo Dinucleotide Composition (PCPseDNC)

The Parallel Correlation Pseudo Dinucleotide Composition (PCPseDNC) encoding has the same
definition with the PseDNC, the different is PCPseDNC encoding used 38 default physiochemical
indices instead of the six physiochemical indices in PseDNC encoding for DNA. The 38
physiochemical indices are listed in Table 5.

Use the following command to extract the PCPseDNC feature descriptors:

tcsh% python iLearn-nucleotide-Pse.py --Tile
examples/DNA_training.txt --method PCPseDNC --type DNA --lamada 2
--weight 0.1

Table S. The names of the 38 physicochemical dinucleotides indices for RNA.

Base stacking Protein induced deformability B-DNA twist A-philicity Propeller twist

Duplex stability:(freeenergy) DNA denaturation Bending stiffness Protein DNA twist Aida_BA_transition
Breslauer dG Breslauer dH Electron_interaction Hartman_trans_free_energy Helix-Coil_transition

Lisser BZ_transition Polar_interaction SantaLucia_dG SantaLucia_dS Sarai_flexibility

Stability Sugimoto_dG Sugimoto_dH Sugimoto_dS Duplex tability(disruptenergy)
Stabilising energy of Z-DNA Breslauer_dS Ivanov_BA_transition SantaLucia_dH Stacking_energy
Watson-Crick_interaction Dinucleotide GC Content Twist Tilt Roll

Shift Slide Rise

5.14.4 Parallel Correlation Pseudo Trinucleotide Composition (PCPseTNC)
The Parallel Correlation Pseudo Trinucleotide Composition (PCPseTNC) encoding (12,13) is
22

defined as:
D= [d1: dy, e, dosy Agagry e d64+,1]T

where
[— L —— ,(1<k<64)
_4 =1 fi Wi, 0
B WO g4
,(65<k<64+21)
l ?§1fi + WZ;'Lzl 9;
where fi (k=1, 2, ..., 64) is the normalized occurrence frequency of trinucleotide in the DNA
sequence, A represent the highest counted rank (or tie) of the correlation along the DNA sequence,
w is the weight factor ranged from 0 to 1, and 6; (j =1,2, ..., A) is the j-tier correlation factor and is
defined:
1 _
(= —ZL > O(RiRi11Ri12, Riz1Ri12Ri13)
9 L 42 @(R Rl+1Rl+2'Rl+2Rl+3Rl+4)
S 03 = Z T O(R; Rl+1Rl+2’Rl+3Rl+4~Rl+5) A<1L)
L—2-2 -

1
0, = I—2-1 Z O(RiRi41Riv2, RiyaRiva+1Rivav2)

\

where the correlation function is defined:

u
O(R;iRi+1Ri+2 Rjs1Rj1R 1) = Z Py(RiRi41Ri12) — Py(RiRj11Ry42)]
u=1

where u is the number of physicochemical indices. Two indices (i.e. 'Dnase I', 'Bendability
(DNAse)' in Table 3 was set as the default indices for DNA sequences. P,(R;R;,1R;;,) is the
numerical value of the u-th (u=1, 2, ..., u) physicochemical index of the dinucleotide R;R;,1R;>

at position i and P(J+1Rj+2) represents the corresponding value of the dinucleotide

RjR; 1R, atposition;.

Use the following command to extract the PCPseTNC feature descriptors:
tcsh% python iLearn-nucleotide-Pse.py --Tile

examples/DNA_training.txt --method PCPseTNC --type DNA --lamada 2
--weight 0.1

5.14.5 Series Correlation Pseudo Dinucleotide Composition (SCPseDNC)
The Series Correlation Pseudo Dinucleotide Composition (SCPseDNC) encoding (12) is defined
as:

— T
D =[dy,dy, ..., d16,d1641s s D162 A164241s -+ A16424]
where

23

(fx
d _4 }=61fl+WZ%=191'
e Wi _16
SEfirwyms,

(1<k<16)

(17 < k <16 4+ 14)

where fi (k=1, 2, ..., 16) is the normalized occurrence frequency of dinucleotide in the nucleotide
sequence, A represent the highest counted rank (or tie) of the correlation along the nucleotide
sequence, w is the weight factor ranged from 0 to 1, A is the number of physicochemical indices
and 6; (j =1,2, ..., A) is the j-tier correlation factor and is defined:

1 -
(6 =132
1 _
0, = 3 Zici Jiin
=
. 9A=ftgzﬁﬂﬁﬂ A<L-2)

1 “A=2 1A—
O ===z 2 i

1 e
O = == Zict Jiiea

where the correlation function is defined:

{ Jetem = PuRiRis1)P(RizmRisms1)
(=12,..,.Am=12,...,4i=12,..,.L—1—-2

where u is the number of physicochemical indices. Six indices (i.e. 'Rise', 'Roll', 'Shift', 'Slide’',
'Tilt', "Twist') in Table 2 and six indices in Table 4 (i.e. 'Rise (RNA)', 'Roll (RNA)', 'Shift (RNA)',
'Slide (RNA)', 'Tilt (RNA)', 'Twist (RNA)') were set as the default indices for DNA and RNA
sequences, separately. P,(R;R;;;) is the numerical value of the wu-th (u=1, 2, ..., w)

physicochemical index of the dinucleotide R;R;,; at position i and Pu(RjRj+1) represents the

corresponding value of the dinucleotide R;R;,; at position ;.

Use the following command to extract the SCPseDNC feature descriptors:

tcsh% python iLearn-nucleotide-Pse.py --Tile
examples/DNA_training.txt --method SCPseDNC --type DNA --lamada 2
--weight 0.1

5.14.6 Series Correlation Pseudo Trinucleotide Composition (SCPseTNC)
The Series Correlation Pseudo Trinucleotide Composition (SCPseTNC) encoding (12) is defined
as:

— T
D =[dy,dy, ..., des, doat1s - » dearr Adoara+1 Aoata+is - dearanl
where

24

(fr
i6;}1 fi+tw Zj'l=1 0;
WO g4

o fit WZ?;ll 0;

where fi (=1, 2, ..., 64) is the normalized occurrence frequency of trinucleotide in the DNA
sequence, A represent the highest counted rank (or tie) of the correlation along the DNA sequence,
w is the weight factor ranged from 0 to 1, A is the number of physicochemical indices and 6; (j
=1,2, ..., A) is the j-tier correlation factor and is defined:

(1 <k <64)

,(65 < k < 64+ 4)

1 _
(81_L—4 lef i1,i+1

1 -
0, =1= 421{=f]i2,i+1
=
VO =pTgXis S A<L—3)

1 —A—3 74—
O = T =325 S

1 -
1 = T —3 250 iaa

where the correlation function is defined:

{]i<,i+m = B (RiRi+ 1) Pu(RismRivm+1Ri+m+2)
(=12,.,4m=12,..,4i=12,..,L—1-3

where u is the number of physicochemical indices. Two indices (i.e. 'Dnase I', 'Bendability
(DNAse)' in Table 3 was set as the default indices for DNA sequences. P,(R;R;,1R;;,) is the
numerical value of the u-th (u=1, 2, ..., u) physicochemical index of the dinucleotide R;R;,1R;>

at position i and Pu(RjRj+1Rj+2) represents the corresponding value of the dinucleotide

RjR; 1R, atposition;.
Use the following command to extract the SCPseTNC feature descriptors:

tcsh% python iLearn-nucleotide-Pse.py --Tile
examples/DNA_training.txt --method SCPseTNC --type DNA --lamada 2
--weight 0.1

6. Commonly Used Feature Descriptors for protein sequences

There are two main programs in iLearn package that are used to generate descriptors for
protein/peptide sequences (i.e. iLearn-protein-basic.py and iLearn-protein-PseKRAAC.py). The
description for these 53 types of protein descriptors have been introduced in our previously
published iFeature (1) package. For more information, please refer to (1). Here we only briefly
introduce the usage for each of the protein descriptor.

37 encoding schemes can be generated by ilearn-protein-basic.py, The parameters of

25

iLearn-protein-basic.py are:
* file: the input sequence file with FASTA format
* method: the descriptor type (select from Table 6)
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name
* path: data file path used for ‘PSSM’, ‘SSEB(C)’, ‘Disorder(B/C)’, ‘ASA’ and ‘TA’
encodings

6.1 Amino Acid Composition (AAC)
The Amino Acid Composition (AAC) encoding (14) calculates the frequency of each amino acid
type in a protein or peptide sequence.

Use the following command to extract the AAC feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method AAC

6.2 Enhanced Amino Acid Composition (EAAC)

The Enhanced Amino Acid Composition (EAAC) feature calculates the AAC based on the
sequence window of fixed length (the default value is 5) that continuously slides from the N- to
C-terminus of each peptide and can be usually applied to encode the peptides with an equal length.

Use the following command to extract the EAAC feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method EAAC

Advanced users can adjust the size of the sliding window by running the ‘EAAC.py’ in the
directory of ‘descproteins’. The parameters of ‘EAAC.py’ are:
* file: the input sequence file with FASTA format
* slwindow: the size of sliding window, default is 5
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, adjust the sliding window to 3:
tcsh% python descproteins/EAAC.py --file
examples/peptide_sequences.txt --slwindow 3

6.3 Composition of k-spaced Amino Acid Pairs (CKSAAP)
The CKSAAP feature encoding calculates the frequency of amino acid pairs separated by any &
residues (k=0, 1, 2, ..., 5. The default maximum value of & is 5) (15-18).

Use the following command to extract the CKSAAP feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method CKSAAP

26

Advanced users can adjust the size of the sliding window by running the ‘CKSAAP.py’ in the
directory of ‘descproteins’. The parameters of ‘CKSAAP.py’ are:

file: the input sequence file with FASTA format

gap: the k-space value, default is 5

format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
out: the output file name

For example, adjust the gap value to 3:
tcsh% python descproteins/CKSAAP.py --file
examples/protein_sequences.txt --gap 3

6.4 Tri-Peptide Composition (TPC)
The Tripeptide Composition (TPC) (14) gives 8000 descriptors.

Use the following command to extract the CKSAAP feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method TPC

6.5 Grouped Amino Acid Composition (GAAC)

In the GAAC encoding, the 20 amino acid types are further categorized into five classes according
to their physicochemical properties, e.g. hydrophobicity, charge and molecular size (19). The five
classes include the aliphatic group (g/: GAVLMI), aromatic group (g2: FYW), positive charge
group (g3: KRH), negative charged group (g4: DE) and uncharged group (g5: STCPNQ).

Use the following command to extract the CKSAAP feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method GAAC

6.6 Enhanced GAAC (EGAAC)

The Enhanced GAAC (EGAAC) is also for the first time proposed in this work. It calculates
GAAC in windows of fixed length (default is 5) continuously sliding from the N- to C-terminal of
each peptide and is usually applied to peptides with an equal length.

Use the following command to extract the EGAAC feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method EGAAC

Use the following command to extract the EGAAC feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method EGAAC

Advanced users can adjust the size of the sliding window by running the ‘EGAAC.py’ in the
directory of ‘descproteins’. The parameters of ‘EGAAC.py’ are:
* file: the input sequence file with FASTA format

27

* slwindow: the size of sliding window, default is 5
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, adjust the sliding window to 3:
tcsh% python descproteins/EGAAC.py —--Tile
examples/peptide_sequences.txt --slwindow 3

6.7 Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP)

The Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP) is a variation of the
CKSAAP descriptor, which is our own proposal. It calculates the frequency of amino acid group
pairs separated by any k residues (the default maximum value of & is set as 5).

Use the following command to extract the CKSAAGP feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method CKSAAGP

Advanced users can adjust the size of the sliding window by running the ‘CKSAAGP.py’ in the
directory of ‘descproteins’. The parameters of ‘CKSAAGP.py’ are:
* file: the input sequence file with FASTA format
* gap: the k-space value, default is 5
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, adjust the gap value to 3:
tcsh% python descproteins/CKSAAGP.py —--file
examples/protein_sequences.txt --gap 3

6.8 Grouped Tri-Peptide Composition (GTPC)
The Grouped Tri-Peptide Composition encoding is also a variation of TPC descriptor, which
generates 125 descriptors.

Use the following command to extract the GTPC feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method GTPC

6.9 Binary (binary)

In the Binary encoding (20,21), each amino acid is represented by a 20-dimensional binary vector,
e.g. A is encoded by (10000000000000000000), C is encoded by (01000000000000000000), ..., Y
is encoded by (00000000000000000001), respectively. This encoding scheme is often used to
encode peptides with an equal length.

Use the following command to extract the binary feature descriptors:
tcsh% python iLearn-protein-basic.py --file

28

examples/protein_sequences.txt --method binary

6.10 Moran correlation (Moran)

The autocorrelation descriptors are defined based on the distribution of amino acid properties
along the sequence (22-24). The amino acid properties used here are different types of amino acids
index, which is retrieved from the AAindex Database (25) available at
http://www.genome.jp/dbget/aaindex.html. The eight indices ‘CIDH920105', 'BHAR880101',
'CHAMS20101", 'CHAMS20102', 'CHOC760101', 'BIGC670101", 'CHAMSI10101",
'DAYM780201" are used (26) as default.

Use the following command to extract the Moran feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method Moran

Advanced users can select the property and adjust the maximum value of the nlag (default is 30)
by running the ‘Moran.py’ in the directory of ‘descproteins’. The parameters of ‘Moran.py’ are:
* file: the input sequence file with FASTA format
* props: input the property names, the names were separated by the symbol "'
* nlag: set the value of nlag, default is 30
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, select two property and set the nlag value is 15:

tcsh% python descproteins/Moran.py —--file
examples/protein_sequences.txt --props CIDH920105:BHAR880101 --nlag
15

6.11 Geary correlation (Geary)
The Geary autocorrelation descriptors (24) is also a type of autocorrelation descriptor.

Use the following command to extract the Geary feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method Geary

Advanced users can select the property and adjust the maximum value of the nlag (default is 30)
by running the ‘Moran.py’ in the directory of ‘descproteins’. The parameters of ‘Moran.py’ are:
* file: the input sequence file with FASTA format
* props: input the property names, the names were separated by the symbol "'
* nlag: set the value of nlag, default is 30
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, select two property and set the nlag value is 15:
tcsh% python descproteins/Geary.py —--file

29

examples/protein_sequences.txt --props CIDH920105:BHAR880101 --nlag
15

6.12 Normalized Moreau-Broto Autocorrelation (NMBroto)
The Moreau-Broto autocorrelation descriptors (23) is also a type of autocorrelation descriptors.

Use the following command to extract the NMBroto feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method NMBroto

Advanced users can select the property and adjust the maximum value of the nlag (default is 30)
by running the ‘Moran.py’ in the directory of ‘descproteins’. The parameters of ‘NMBroto.py’ are:
* file: the input sequence file with FASTA format
* props: input the property names, the names were separated by the symbol "'
* nlag: set the value of nlag, default is 30
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, select two property and set the nlag value is 15:

tcsh% python descproteins/Geary.py —--file
examples/protein_sequences.txt --props CIDH920105:BHAR880101 --nlag
15

6.13 Composition/Transition/Distribution (CTD)

The Composition, Transition and Distribution (CTD) features represent the amino acid distribution
patterns of a specific structural or physicochemical property in a protein or peptide sequence
(27-31). Seven types of physicochemical properties have been previously used for computing these
features. These include hydrophobicity, normalized Van der Waals Volume, polarity,
polarizability, charge, secondary structures and solvent accessibility. These descriptors are
calculated according to the following procedures: (i) The sequence of amino acids is transformed
into a sequence of certain structural or physicochemical properties of residues; (ii)) Twenty amino
acids are divided into three groups for each of the seven different physicochemical attributes based
on the main clusters of the amino acid indices of Tomii and Kanehisa (32). The groups of amino
acids are listed in Table 6.

Table 6. Amino acid physicochemical attributes and the division of the amino acids into three
groups according to each attribute.

Attribute Division
Hydrophobicity Polar: RKEDQN Neutral: GASTPHY Hydrophobicity:
CLVIMFW
Normalized van Volume range: Volume range: 2.95-94.0 Volume range:
der Waals volume 0-2.78 NVEQIL 4.03-8.08
GASTPD MHKFRYW
Polarity Polarity value: Polarity value: 8.0-9.2 Polarity value:

30

4.9-6.2 PATGS 10.4-13.0

LIFWCMVY HQRKNED
Polarizability Polarizability value: Polarizability value: Polarizability value:
0-1.08 0.128-120.186 0.219-0.409
GASDT GPNVEQIL KMHFRYW
Charge Positive: KR Neutral: Negative: DE
ANCQGHILMFPSTWYV
Secondary Helix: EALMQKRH Strand: VIYCWFT Coil: GNPSD
structure
Solvent Buried: Exposed: PKQEND Intermediate: MPSTHY
accessibility ALFCGIVW
6.13.1 CTDC

Use the following command to extract the CTDC feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method CTDC

6.13.2 CTDT

The Transition descriptor T also consists of three values (27,28): A transition from the polar group
to the neutral group is the percentage frequency with which a polar residue is followed by a neutral
residue or a neutral residue by a polar residue.

Use the following command to extract the CTDT feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method CTDT

6.13.2 CTDD

The Distribution descriptor consists of five values for each of the three groups (polar, neutral and
hydrophobic) (27,28), namely the corresponding fraction of the entire sequence, where the first
residue of a given group is located, and where 25, 50, 75 and 100% of occurrences are contained.

Use the following command to extract the CTDD feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method CTDD

6.14 Conjoint Triad (CTriad)
The Conjoint Triad descriptor (CTriad) considers the properties of one amino acid and its vicinal
amino acids by regarding any three continuous amino acids as a single unit (33).

Use the following command to extract the CTriad feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method CTriad

6.15 k-Spaced Conjoint Triad (KSCTriad)
31

The k-Spaced Conjoint Triad (KSCTriad) descriptor is based on the Conjoint CTriad descriptor,
which not only calculates the numbers of three continuous amino acid units, but also considers the
continuous amino acid units that are separated by any & residues (The default maximum value of &
is set to 5).

Use the following command to extract the KSCTriad feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method KSCTriad

Advanced users can adjust the value of &k to <k> by running the ‘KSCTriad.py’ in the directory of
‘descproteins’. The parameters of KSCTriad.py’ are:
* file: the input sequence file with FASTA format
* gap: the k-space value, default is 5
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, adjust the gap value to 3:
tcsh% python descproteins/KSCTriad.py --file
examples/protein_sequences.txt --gap 3

6.16 Sequence-Order-Coupling Number (SOCNumber)

Use the following command to extract the SOCNumber feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method SOCNumber

Advanced users can adjust the value of lag (ingeger, default is 30) by running the ‘SOCNumber.py’
in the directory of ‘descproteins’. The parameters of ‘SOCNumber.py’ are:
* file: the input sequence file with FASTA format
* lag: the lag value for SOCNumber, default is 30
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, adjust the /ag value to 10:
tcsh% python descproteins/SOCNumber.py —--file
examples/protein_sequences.txt --lag 10

6.17 Quasi-sequence-order (QSOrder)

Use the following command to extract the QSOrder feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method QSOrder

Advanced users can adjust the value of lag (ingeger, default is 30) by running the ‘SOCNumber.py’
in the directory of ‘descproteins’. The parameters of ‘SOCNumber.py’ are:
* file: the input sequence file with FASTA format

32

lag: the lag value for QSOrder, default is 30

weight: the weight factor, ranged from 0-1, default is 0.1

format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
out: the output file name

For example, adjust the /ag value to 10 and set the weight factor is 0.2:
tcsh% python descproteins/QSOrder.py —--file
examples/protein_sequences.txt --lag 10 --weight 0.2

6.18 Pseudo-Amino Acid Composition (PAAC)
This group of descriptors has been proposed in (34,35).

Use the following command to extract the PAAC feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/protein_sequences.txt --method PAAC

Advanced users can adjust the value of A (ingeger, default is 30) and weight factor (default is

0.05) by running the ‘PAAC.py’ in the directory of ‘descproteins’. The parameters of ‘PAAC.py’
are:

file: the input sequence file with FASTA format

lamada: the lamada value for PAAC.py, default is 30

weiht: the weight factor for PAAC.py, default is 0.05

format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
out: the output file name

For example, adjust the A value to 10 and set the weight factor is 0.1:

tcsh% python descproteins/PAAC.py --file
examples/protein_sequences.txt --lamada 10 --weight 0.1

6.19 Amphiphilic Pseudo-Amino Acid Composition (APAAC)
Amphiphilic Pseudo-Amino Acid Composition (APAAC) was proposed in (34,35).

Use the following command to extract the APAAC feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/protein_sequences.txt --method APAAC

Advanced users can adjust the value of A (ingeger, default is 30) by running the ‘APAAC.py’ in

the directory of ‘descproteins’. The parameters of ‘APAAC.py’ are:
* file: the input sequence file with FASTA format
* lamada: the lamada value for PAAC.py, default is 30
* weiht: the weight factor for PAAC.py, default is 0.05

33

* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, adjust the A value to 10 and set the weight factor is 0.1:

tcsh% python descproteins/APAAC.py --Tile
examples/protein_sequences.txt --lamada 10 --weight 0.1

6.20 K-Nearest Neighbor for peptides (KNNpeptide)

The K-Nearest Neighbor for peptides (KNNpeptide) descriptor (36) requires an extra training file
and a label file. The training file is used to calculate the top K-Nearest Neighbor peptides by
calculating the similarity score of two peptide sequences.

Use the following command to extract the KNNpeptide feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/peptide_sequences.txt --method KNNpeptide

6.21 K-Nearest Neighbor for proteins (KNNprotein)

The K-Nearest Neighbor for Proteins (KNNProtein) descriptor is similar to the KNNpeptide
descriptor. The only difference between these two descriptors is the way similarity is calculated. In
KNNprotein the similarity score of two protein sequences is obtained by applying the
Needleman-Wunsch algorithm (37).

Use the following command to extract the KNNprotein feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/peptide_sequences.txt --method KNNprotein

6.22 PSSM profile (PSSM)

This feature descriptor (38,39) is extracted from the Position-Specific Scoring Matrix (PSSM)
profile. The PSSM profile can be obtained by running PSI-BLAST (40) against the uniref 50
database. The PSSM descriptor is usually applied to encode the peptides with equal length. Each
amino acid in the peptide is represented by a 20-dimensional vector.

Use the following command to extract the PSSM feature descriptors:

tcsh% python iLearn-protein-basic.py —--file
examples/peptidel_sequences.txt --method PSSM --path
examples/predictedProteinProperty

6.23 AAindex (AAINDEX)

Physicochemical properties of amino acids are the most intuitive features for representing
biochemical reactions and have been extensively applied in bioinformatics research. The amino
acid indices (AAindex) database (25) collects many published indices representing
physicochemical properties of amino acids. For each physicochemical property, there is a set of 20
numerical values for all amino acids. Currently, 544 physicochemical properties can be retrieved

34

from the AAindex database. After removing physicochemical properties with value 'NA' for any of
the amino acids, 531 physicochemical properties were left. In contrast to the residue-based
encoding methods of amino acid identity and evolutionary information, a vector of 531 mean
values is used to represent a sample for various window sizes. The AAINDEX descriptor (41) can
be applied to encode peptides of equal length.

Use the following command to extract the AAINDEX feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/peptidel sequences.txt --method AAINDEX

Advanced users can select the properties by running the ‘AAINDEX.py’ in the directory of
‘descproteins’. The parameters of ‘AAINDEX.py’ are:
* file: the input sequence file with FASTA format
* props: input the property names, the names were separated by the symbol "'
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name

For example, select two property:

tcsh% python descproteins/AAINDEX.py —--file
examples/peptide_sequences.txt --props CIDH920105:BHAR880101

6.24 BLOSUM62 (BLOSUMG62)

In this descriptor, the BLOSUM®62 matrix is employed to represent the protein primary sequence
information as the basic feature set. A matrix comprising of m x n elements is used to represent
each residue in a training dataset, where n denotes the peptide length and m = 20, which elements
comprise 20 amino acids. Each row in the BLOSUM62 matrix is adopted to encode one of 20
amino acids. The BLOSUMBS62 descriptor (42) can be applied to encode peptides of equal length.

Use the following command to extract the BLOSUM®62 feature descriptors:
tcsh% python iLearn-protein-basic.py —--file
examples/peptide_sequences.txt --method BLOSUM62

6.25 Secondary Structure Elements Content (SSEC)
Protein secondary structure was first predicted by the PSIPRED V4.0 software (43).

Use the following command to extract the SSEC feature descriptors:

tcsh% python iLearn-protein-basic.py --file
examples/peptidel_sequences.txt --method SSEC --path
examples/predictedProteinProperty

6.26 Secondary Structure Elements Binary (SSEB)

In the Secondary Structure Elements Binary (SSEB) descriptor, each residue in a peptide is
represented by a 3-dimensional vector, i.e. Helix (001), Strand (010), Coil (100). The SSEB
descriptor can be applied to encode peptides of equal length.

35

Use the following command to extract the SSEB feature descriptors:

tcsh% python iLearn-protein-basic.py —--file
examples/peptidel_sequences.txt --method SSEB --path
examples/predictedProteinProperty

6.27 Disorder (Disorder)

Protein disorder information was first predicted by the VSL2 software (44,45). The predicted
probability value is taken as the feature. The Disorder descriptor (38,46) can be applied to encode
peptides of equal length.

Use the following command to extract the Disorder feature descriptors:

tcsh% python iLearn-protein-basic.py —--file
examples/peptidel sequences.txt --method Disorder --path
examples/predictedProteinProperty

6.28 Disorder Content (DisorderC)

Use the following command to extract the DisorderC feature descriptors:

tcsh% python iLearn-protein-basic.py --file
examples/peptidel sequences.txt --method DisorderC --path
examples/predictedProteinProperty

6.29 Disorder Binary (DisorderB)

For the Disorder Binary (DisorderB) descriptor, each residue in a peptide sequence is represented
by a 2-dimensional vector, namely an order residue by (10) and a disorder residue by (01). The
DisorderB descriptor can be applied to encode peptides of equal length.

Use the following command to extract the DisorderB feature descriptors:

tcsh% python iLearn-protein-basic.py —--file
examples/peptidel sequences.txt --method DisorderB --path
examples/predictedProteinProperty

6.30 Accessible Solvent accessibility (ASA)

The protein Accessible Solvent Accessibility information was first predicted by the SPINE-X
software (47-49). The predicted ASA value is used as input feature. The ASA descriptor can be
applied to encode peptides with an equal length.

Use the following command to extract the ASA feature descriptors:

tcsh% python iLearn-protein-basic.py —--file
examples/peptidel sequences.txt --method ASA --path
examples/predictedProteinProperty

6.31 Torsion angle (TA)

36

The protein Torsion Angle information was also introduced first by the SPINE-X software (47-49).
The predicted “phi” and “psi” values are used as features. The TA descriptor can be applied to
encode peptides of equal length.

Use the following command to extract the TA feature descriptors:

tcsh% python iLearn-protein-basic.py —--file
examples/peptidel sequences.txt --method TA --path
examples/predictedProteinProperty

6.32 Z-Scale (ZSCALE)

For this descriptor, each amino acid is characterized by five physicochemical descriptor variables
(cf. Table 2), which were developed by Sandberg et al. in 1998 (50). The ZSCALE descriptor (51)
can be applied to encode peptides of equal length.

Use the following command to extract the ZSCALE feature descriptors:
tcsh% python iLearn-protein-basic.py --file
examples/peptide_sequences.txt --method ZSCALE

6.32 pseudo K-tuple reduced amino acids composition (PseKRAAC)
16 PseKRAAC encoding schemes can be generated by iLearn-protein-PseKRAAC.py, The
parameters of iLearn-protein-PseKRAAC.py are:
* file: the input sequence file with FASTA format
* method: the descriptor type (select from typel, type2, type3A, type3B, typed, typeS,
type6A, type6B, type6C, type7, type8, type9, typelO, typell, typel2, typel3, typel4,
typels, typel6)
* model: feature types for protein sequence analysis, two alternative modes (g-gap and
lambda-correlation) are available, with the ‘g-gap’ model as the default
* ktuple: K-tuple value, three K-tuple values (i.e. 1, 2 and 3) are available, default is 2
* gap lambda: gap value for the ‘g-gap’ model or lambda value for the ‘lambda-correlation’
model, 10 values are available (i.e. 0, 1,2, ..., 9)
* fype: the reduced amino acids cluster type
* format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported
* out: the output file name
* show: show detailed available “--type” value for each type

Users can run the following command to view the available values for each descriptor type:
tcsh% python iLearn-protein-PseKRAAC.py --show

Use the following command to extract the Pse KRAAC feature descriptors:

tcsh% python iLearn-protein-PseKRAAC. py --file
examples/protein_sequences.txt --method typel --model
lambda-correlation --ktuple 2 --gap_lambda 2 --type 5

37

7. Feature Analysis Using iLearn

iLearn integrates several commonly used and useful clustering, feature selection, feature
normalization, and dimensionality reduction algorithms. The clustering algorithms can be
implemented by running the ‘iLearn-clustering.py’. The parameters of iLearn-clustering.py are:

* file: the encoding file, and a ‘tsv_1’ file format is required

* method: cluster algorithm (select from kmeans, hcluster, apc, meanshift and dbscan)

* sof: cluster for sample or feature, default is sample

* ktuple: K-tuple value, three K-tuple values (i.e. 1, 2 and 3) are available, default is 2

* nclusters: specify the cluster number for kmeans cluster algorithm, default is 3

* ppe: the reduced amino acids cluster type

* out: the output file name

7.1 K-Means clustering (kmeans)

The K-Means algorithm clusters data by trying to separate samples in n groups of equal variance,
minimizing a criterion known as the inertia or within-cluster sum-of-squares (52,53). This
algorithm requires the number of clusters to be specified. It scales well to large numbers of
samples and has been used across a broad range of application areas.

Use the following command to perform the K-Means clustering:

tcsh% python iLearn-clustering.py --file
examples/code_for_cluster.txt --method kmeans --sof sample
--nclusters 2

7.2 Gaussian Mixture clustering (gmm)
The Gaussian mixture model (GMM) attempts to find a mixture of multi-dimensional Gaussian
probability distributions that best model any input dataset.

Use the following command to perform the gmm clustering:

tcsh% python iLearn-clustering.py --file
examples/code_for_cluster.txt --method gmm --sof sample --nclusters
2

7.3 Hierarchical clustering (hcluster)
Hierarchical clustering is a general family of clustering algorithms that build nested clusters by
merging or splitting them successively (52-54). This hierarchy of clusters is represented as a tree
(or dendrogram). The root of the tree is the unique cluster that gathers all the samples, the leaves
being the clusters with only one sample.

Use the following command to perform the hcluster clustering:
38

tcsh% python iLearn-clustering.py --file
examples/code_for_cluster.txt --method hcluster

7.4 Affinity Propagation clustering (apc)

Affinity Propagation creates clusters by sending messages between pairs of samples until
convergence (55). A dataset is then described using a small number of exemplars, which are
identified as the most representative of samples. The messages sent between pairs represent the
suitability for one sample to be the exemplar of the other, which is updated in response to the
values from other pairs. This updating happens iteratively until convergence has been achieved, at
which point the final exemplars are chosen, and hence the final clustering is given.

Use the following command to perform the apc clustering:
tcsh% python iLearn-clustering.py --file
examples/code_for_cluster.txt --method apc

7.5 Mean Shift clustering (meanshift)

MeanShift clustering aims to discover blobs in a smooth density of samples (56). It is a centroid
based algorithm, which works by updating candidates for centroids that are the mean of the points
within a given region. These candidates are then filtered in a post-processing stage to eliminate
near-duplicates and to form the final set of centroids.

Use the following command to perform the meanshift clustering:
tcsh% python iLearn-clustering.py --file
examples/code_for_cluster.txt --method meanshift

7.6 DBSCAN clustering (dbscan)
The DBSCAN algorithm views clusters as areas of high density separated by areas of low density
(57).

Use the following command to perform the dbscan clustering:
tcsh% python iLearn-clustering.py --file
examples/code_for_cluster.txt --method dbscan

The feature normalization algorithms can be implemented by running the
‘iLearn-feature-normalization.py’. The parameters of iLearn-feature-normalization.py are:

* file: the encoding file

* method: feature normalization algorithm (select from ZScore and MinMax)

* format: the input file format (select from csv, tsv, svm, weka)

* out: the output file name

7.7 ZScore (ZScore)
Use the following command to perform the ZScore feature normalization:

39

tcsh% python iLearn-feature-normalization.py --file examples/

DNA _code_training.txt --method ZScore --format svm

7.8 MinMax (MinMax)
Use the following command to perform the MinMax feature normalization:

tcsh% python iLearn-feature-normalization.py --file examples/

DNA _code_training.txt --method MinMax --format svm

The feature selection algorithms can be implemented by running the ‘iLearn-feature-selectior.py’.

The parameters of iLearn-feature-selectior.py are:
* file: the encoding file
* method: feature selection algorithm (select from CHI2, IG, MIC, pearsonr)
* format: the input file format (select from csv, tsv, svm, weka)
* out: the output file name

7.9 Chi-Square feature selection (CHI2)

Use the following command to perform the chi2 feature selection algorithm:
tcsh% python iLearn-feature-selectior.py
examples/DNA_code_testing.txt --method CHI2 --format svm

7.10 Information Gain feature selection (IG)

--file

Information gain (IG) measures the amount of information in bits with respect to the class
prediction, if the only information available is the presence of a feature and the corresponding

class distribution (15,17).

Use the following command to perform the 1G feature selection algorithm:
tcsh% python iLearn-feature-selectior.py
examples/DNA_code_testing.txt --method IG --format svm

7.11 F-Score (Fscore)

The F-score value of the i-th feature is defined in (58):

Use the following command to perform the F-score feature selection algorithm:
tcsh% python iLearn-feature-selectior.py
examples/DNA_code_testing.txt --method Fscore --format svm

7.12 Mutual Information feature selection (MIC)

Use the following command to perform the MI clustering:

tcsh% python iLearn-feature-selectior.py
examples/DNA_code_testing.txt --method MIC --format svm

7.13 Pearson Correlation coefficient feature selection (pearsonr)
Use the following command to perform the MI clustering:

40

--file

--file

--file

tcsh% python iLearn-feature-selectior.py --file
examples/DNA_code_testing.txt --method pearsonr --format svm

The dimension reduction algorithms can be implemented by running the
‘iLearn-dimension-reduction.py’. The parameters of iLearn-dimension-reduction.py are:

* file: the encoding file

* method: feature selection algorithm (select from CHI2, IG, MIC, pearsonr)

* format: the input file format (select from csv, tsv, svm, weka)

* ncomponents: the number of components, default is 3

* out: the output file name

7.14 Principal Component Analysis (pca)
PCA (59) is used to decompose a multivariate dataset in a set of successive orthogonal
components that explain a maximum amount of the variance.

Use the following command to perform the pca clustering:
tcsh% python iLearn-dimension-reduction.py --file
examples/DNA_code_testing.txt --method pca --format svm

7.15 Latent Dirichlet Allocation (Ida)
Latent Dirichlet Allocation (60) is a generative probabilistic model for collections of discrete
dataset such as text corpora.

Use the following command to perform the lda clustering:
tcsh% python iLearn-dimension-reduction.py --file
examples/DNA_code_testing.txt --method lda --format svm

7.16 t-Distributed Stochastic Neighbor Embedding (tsne)

Use the following command to perform the tsne clustering:

tcsh% python iLearn-dimension-reduction.py --file
examples/DNA_code_testing.txt --method tsne --format svm

8 Predictor Construction Using iLearn

In iLearn, five commonly used machine learning algorithms were provided, include SVM, RF,
ANN, KNN and LR.

8.1 Support Vector Machine (SVM)

SVM aims to accurately classify samples by generating optimal hyperplanes based on the feature
dimensionality of the training data (61,62). The resulting mapping formula generated by SVM is
usually not interpretable, but invariably yields to satisfactory classification/prediction performance.
Therefore, SVM is usually the ‘first choice’ adopted in many bioinformatics studies (20,21). A
variety of kernels have been developed for SVM, for different classification scenarios, including

41

gaussian radial basis function (RBF), linear/polynomial/sigmoid kernel, etc.

The parameters of iLearn-ML-SVM.py are:
* train: the training coding file, which is used to build a model
* indep: the independent coding file, which is used as the independent dataset
* format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are
supported
* kernel: kernel functions (select from linear, poly, rbf and sigmoid, default is rbf)
* quto: auto optimize parameters (default is False)
* batch: random select part (batch * samples) samples for parameters optimization
* degree: set degree in polynomial kernel function (default is 3)
* gamma: set gamma in polynomial/rbf/sigmoid kernel function (default is 0)
* coef0: set coefl in polynomial/rbf/sigmoid kernel function (default is 0)
* cost: set the parameter cost value (default 1)
* fold: set K-fold cross-validation mode (default is 5-fold cross-validation)
* out: set prefix for output score file

Use the following command to perform the SVM algorighm:

tcsh% python iLearn-ML-SVM.py —-train examples/DNA_code_training.txt
-—indep examples/DNA_code_testing.txt —--format svm --batch 0.5 --auto
--out SVM

8.2 Random Forest (RF)

Random forest (RF) (63) is another well-established and widely employed algorithm, which has
been applied for many bioinformatics applications (64-67). RF is essentially an ensemble of a
number of decision trees, T={T;(X), T, (X), ..., Ty(X)} built on N random subsets of the training
data, and the average prediction performance is usually reported in order to avoid over-fitting (63).
The obvious advantage of RF is its interpretability, as every decision tree consists of a number of
‘if...then...” rules, which are fairly straightforward to explain. Such rules can potentially provide
biologists with insights and knowledge discovery that would otherwise remain buried in the data.
When applying RF, one should bear in mind that the number of decision trees is an important
parameter and should be tested exhaustively based on the specific application or biological
question, for optimal prediction performance.

The parameters of iLearn-ML-RF .py are:
* train: the training coding file, which is used to build a model
* indep: the independent coding file, which is used as the independent dataset
* format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are
supported
* n_trees: the number of trees in the forest (default is 100)
fold: set K-fold cross-validation mode (default is 5-fold cross-validation)
* out: set prefix for output score file

42

Use the following command to perform the RF algorighm:
tcsh% python iLearn-ML-RF.py --train examples/DNA code_training.txt
—-—indep examples/DNA_code_testing.txt --format svm --out RF

8.3 Artificial Neural Network
An Artificial Neural Network (ANN) usually contains multiple nodes as input and multiple layers

to connect these input nodes, mimicking neurons and their functions/connectivity in human brains
(68).

The parameters of iLearn-ML-MLP.py are:
* train: the training coding file, which is used to build a model

indep: the independent coding file, which is used as the independent dataset

format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are

supported

* hidden: set the hidden layer and size in each layer

* Jost: set the lost function, choose from ‘lbfgs’, ‘sgd’ or ‘adam’. Default is ‘Ibfgs’

* activation: activation function, choose from ‘identity’, ‘logistic’, ‘tanh’, ‘relu’. Default is
‘relu’

* epochs: set the maximum number of iterations. Default is 200

* [r: learning rate. Default is 0.0001

fold: set K-fold cross-validation mode (default is 5-fold cross-validation)

* out: set prefix for output score file

Use the following command to perform the ANN algorighm:

tcsh% python 1Learn-ML-MLP.py —-train examples/DNA_code_training.txt
-—indep examples/DNA_code_testing.txt --format svm --out ANN --hidden
32:32

8.4 K-Nearest Neighbours algorithm (KNN)

K-Nearest Neighbours (KNN) algorithm is another commonly employed unsupervised algorithm
that clusters samples by calculating their similarities/distances (38). Given the training dataset
D = {v4,v,,...,v,} and a testing sample x, KNN (38) calculates the distances between x and all
the instances in D. As a result, the query sample will be assigned to the same class as its nearest
neighbor (shortest distance) in the training dataset.

The parameters of iLearn-ML-MLP.py are:
* train: the training coding file, which is used to build a model
* indep: the independent coding file, which is used as the independent dataset
* format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are
supported
k: set the K nearest neighbor value (default is 3)
fold: set K-fold cross-validation mode (default is 5-fold cross-validation)
* out: set prefix for output score file

43

Use the following command to perform the ANN algorighm:
tcsh% python iLearn-ML-KNN.py —-train examples/DNA _code_training.txt
-—indep examples/DNA _code_testing.txt --format svm --out KNN --k 5

8.5 Logistic Regression (LR)
LR can be used to build a classification model for many prediction tasks (69,70), which can be
represented as (71):

h(x) = b+ wyx; + -+ wypxy,
where x; are the input features, w: the weight parameters, and b is the bias value. Given an
unlabeled input x, the likelihood of x with the class label (a given PTM type) can be defined as:

P(h(x)) = —==

Tre-ht

The parameters of iLearn-ML-LR.py are:

* train: the training coding file, which is used to build a model

* indep: the independent coding file, which is used as the independent dataset

* format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are
supported
fold: set K-fold cross-validation mode (default is 5-fold cross-validation)
* out: set prefix for output score file

Use the following command to perform the LR algorighm:
tcsh% python iLearn-ML-LR.py --train examples/DNA code_training.txt
-—indep examples/DNA_code_testing.txt --format svm --out LR

Generally, SVM is suitable for dealing with binary classification tasks and is able to handle high
dimensional data. According to our experience, it is hard to improve the performance of an SVM
model by using the feature selection method (21,72,73), though the latter can significantly improve
the performance for RF and KNN models (38,64). For the multi-class classification task, RF and
ANN are better choices. ANNs are an alternative to LR, the statistical technique with which they
share most similarities. ANNs offer a number of advantages, such as requiring less formal
statistical training, ability to implicitly detect complex nonlinear relationships between dependent
and independent variables, ability to detect all possible interactions between predictor variables,
and availability of multiple training algorithms. However, the disadvantage of ANN and SVM is
their “black box nature (74). Lastly, the performance of an ANN model is dependent on the
sample size of the training data, while RF is usually the most robust algorithm.

8.6 Descriptor estimater
For a prediction task, the iLearn package can select out the descriptor with the best performance
by using the ‘iLearn-descriptor-estimater.py’.

Use the following command to run the iLearn descriptor estimater:
tcsh% python iLearn-descriptor-estimater.py
The parameters of iLearn-descriptor-estimater.py are:

44

* config: specify the configure file.

8.7 iLearn pipeline
All the individual functionalities in iLearn can be implemented as a pipeline by using the
‘iLearn-auto-pipeline.py’ script.

Use the following command to run the iLearn pipeline:
tcsh% python iLearn-auto-pipline.py
The parameters of iLearn-auto-pipeline.py are:

* config: specify the configure file.
The following is an example of the configure file:

45

Input file information
Sequence_File=examples/example.txt

Sequence_Type=DNA

Descriptor method

Method=DNC; TNC;Kmer

parameters for nucleotide, protein and peptide descriptors
Kmer, RCKmer & PseKNC

Kmer_Size=3

ENAC, EAAC, EGAAC,

Sliding_Window=5

CKSNAP, CKSAAP, CKSAAGP, KSCTriad

K_Space=5

Auto-Correlation, NMBroto, Geary, Moran, SOCNumber, QSOrder
Lag_Value=2

Auto-Correlation, Pseudo nucleic acid composition, QSOrder, PAAC, APAAC
Weight_Value=0.1

Auto-Correlation & Pseudo nucleic acid composition, PAAC, APAAC
Lamada_Value=2
Auto-Correlation & Pseudo nucl
Di-DNA-Phychem=Rise;Roll;Shift;Slide;Tilt;Twist

Tri-DNA-Phychem=Dnase I ;Bendal ty (DNAse)
Di-DNA-Phychem-default6=Rise;Roll;Shift;Slide;Tilt;Twist

RNA-Phychem=Rise (RNA);Roll (RNA);Shift (RNA);Slide (RNA);Tilt (RNA);Twist (RNA)
All_Property=False

AAindex properties, NMBroto, Geary, Moran

AAiIndex=ANDN920101 ; ARGP820101 ; ARGP820102 ; ARGP820103; BEGF750101 ; BEGF750102 ; BEGF750103 ; BHAR880101
PseKRAAC

PseKRAAC_Mode l=g-gap

Ktuple=2

GapLamada=2

RAACClusterl=2

RAACCluster2=2

RAACCluster3A=2

RAACCluster3B=2

RAACCluster4=5

RAACCluster5=2

RAACCluster6A=5

RAACCluster6B=5

RAACCluster6C=5

RAACCluster7=2

RAACCluster8=2

RAACCluster9=2

RAACCluster10=2

RAACCluster11=2

RAACCluster12=2

RAACClusterl3=4

RAACCluster14=2

RAACCluster15=2

RAACCluster16=2

output format

Output_Format=svm

Clustering

Clustering_Algorithm=

Kmean_Cluster_Number=2

Clustering_Type=sample

Feature Normalization

Feature_Normalization_Algorithm=

Feature selection

Feature_Selection_Algorithm=

Selected_Feature_Number=100

Dimension reduction

Dimension_Reduction_Algorithm=

Dimension_Reduction_Number=3

Model construction

ML=RF;SVM

Parameters for SVM

Kernel=rbf

Cost=1.0

Gamma=

Auto_Opterimize=False

RF

Tree_Number=100

KNN

K_Nearest_Neighbour=3

ANN

Hidden_Layer_Size=32;32

K-fold Cross-Validation

Validation=5

Ensemble learning

Ensemble=YES

ic acid composition

40

9. Performance Evaluation Strategy of iLearn

iLearn support both the binary classification task and multiclass classification task. For binary
classification problem, seven frequently-used measures are supported by ilLearn, including
Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), Matthew correlation coefficient (MCC), Recall,
Precision, Fl-score, the area under ROC curve (AUROC) and the area under the PRC curve
(AUPRC). Sn, Sp, ACC, MCC, Recall, Precision and F1-score are defined as:

+

N*
Sn = Recall =1 “NE

Ny
Sp=1-—+
p e

N+ N;
Nt + N~
Nt + N;)
Nt 4+ N-
= 7t I
Jas e Mg NN
Ny
N+ +N;
Ny +NZ
2XN*+ N7 +N*
where N*, N7, N~ and N represent the numbers of true positives, false positives, true
negatives and false negatives respectively. The AUROC value is calculated based on the
Receiver-Operating-Characteristic (ROC) curve, and takes values between 0 and 1, while the
AUPRC value is calculated based on the Precision-Recall curve, where, the higher the AUROC
and AUPRC value, the better the prediction performance.

Acc =1-—

1-(
MCC =

Precision =1 —

F1 —score=1—

For multiclass classification problems, the Acc is used to evaluate the performance, which is

defined as (75,76):

NX(@) + N7 (D)

N*(@) + N~(i)
where N*(i), Ny(i), N~(i) and N*(i) represent the numbers of samples in the i-th class, the
total number of the samples in the i-th class but predicted as one of the other classes, the total
number of the samples not in the i-th class and the total number of the samples not in the i-th class
but predicted as the i-th class, respectively.

Acc =1-—

10. Online Web Server

Moreover, for users that are not familiar with computer programming using Python we also
implemented an online web server of iLearn, which 1is publicly available at
http://ilearn.erc.monash.edu/. It is configured for the extensible cloud computing facility supported

47

by the e-Research Centre at Monash University, equipped with 16 cores, 64 GB memory and a 2
TB hard disk. This configuration can be easily upgraded in line with increasing user demands in
the future.

The iLearn web server is a user-friendly online platform for implementing the function integrated
in the iLearn package. Take the sub web server for DNA analysis as an example: 26 descriptors
can be selected to transform the DNA sequences into feature vectors. For example, when “Kmer”
is selected, the parameter of “Kmer size” will be displayed on the page. Then, users can decide
which feature analysis procedure (e.g. clustering, feature selection, dimensionality reduction and
feature normalization) is included in the analysis process. When the SVM algorithm is selected to
construct the predictor, one should also specify the kernel (the default is RBF kernel). Users not
only can set the values of ‘gamma’ and ‘cost’ for the RBF kernel, but also use the function of
automatic parameter optimization by clicking the “Auto optimize parameters” button. K-fold
cross-validation is supported by the iLearn web server. Users can select the commonly used 5-fold
and 10-fold cross-validation, or input a K value. The step-by-step of usage instructions is as
follows:

Input “http://ilearn.erc.monash.edu” on your browser, and click the “Go To Use It” button. Then,
you will see the descriptor calculation page.

iLearnWeb Server Help Job list Contact

iLearn, a Python Toolkit and Web Server Integrating the Functionality of Feature
Calculation, Extraction, Clustering, Feature Selection, Feature Normalization, Dimension Reduction and Model
Construction for Classification, Best Model Selection, Ensemble Learning and Result Visualization for DNA, RNA
and Protein Sequences.

With the explosive increasement of the biclogical sequences in the post-genomic age, how to computationally analyz:

of the most challenging problems in the computational biology. Although several web servers and stand-alone tools wi Chck here to go to the have
their limitations. Here, we present iLeam, a versatile Python-based toolkit, integrating the functionality of feature exira ion,
predictor construction and result visuallization for the DNA, RNA and protein and all the procedures can be completed deSCI‘lptOI‘ CalCulatlon page, bct the

functions their needed . ilearn includes variety of descriptors for DNA, RNA and proteins, respectively and four output
directly used in other tools. 15 different types feature clustering, seleciion, normalization, dimensionality reduction algorithms, and 5 commonly used machi
facilitating feature analysis and prediction consturtion. The functionality of iLearn is made freely available via an online web server and a stand-alone toolkit

m GoToUselt ‘Query Your Job

Step 1. Select the biological sequence type. For example, we select the DNA sequence.

dorithms, greatly

48

iLearnWeb Server Help Joblist Contact

sreans: ILearn Web Server

y
(2 >~ iLearn DNA
Z/ 8 Integrating the functionality of feature calculation/extraction, clustering,
S feature normalization, feature selection, dimension reduction, model
construction for classification and result visualization for DNA sequence.

DNA sequences
iLearn RNA

Integrating the functionality of feature calculation/extraction, clustering
feature normalization, feature selection, dimension reduction, model

construction for classification and result visualization for RNA sequence.

RNA sequences

O / Integrating the functionality of feature calculation/extraction, clustering,
_&. feature normalization, feature selection, dimension reduction, model
construction for classification and result visualization for Protein
.\/\D sequence

Protein sequences

)
iLearn Protein
[)
)

Step 2. Input your fasta sequences in the designated text area or upload a file that includes the
sequences in 'special FASTA' format format.

iLearnWeb er Help Job list Contact

DNA sequences RNA sequences Protein sequences

Basic information

Enter the query DNA sequences in FASTA format (?):
(maximum 2000 sequences for each submission)
Example | &

CGCATACTIT

4

Note: Paste your protein (or peptide) sequences in the TEXTAREA' or upload a file that includes
the sequences. The biological sequences must be in a specified 'FASTA' format. iLearn was
designed to accept at most 2000 sequences at once.

Step 3. Select descriptor

49

iLearnWeb Server Help Joblist Contact

DNA sequences RNA sequences Protein sequences

Basic information

Enter the query DNA sequences in FASTA format (?):
(maximum 2000 sequences for each submission)
Example

Or upload a file:

Select feature descriptor:

Kmer size:
Select output format for feature: | l
Clustering
Cluster for:
Cluster methods:

Feature normalization

Feature normalization methods:

Feature selection

Feature selection methods:

iLearnWeb Server Help Joblist Contact

DNA sequences RNA sequences Protein sequences

Basic information:

Enter the query DNA sequences in FASTA format (?):
(maximum 2000 sequences for each submission)

Example
Or upload a file:
Select feature descriptor: | Kmer v

Kmersize: | 3 v

Tab format
Select output format for feature:

Step 5. Select clustering algorithm and set the parameter for the selected clustering algorithm.

Clustering

Cluster for

Cluster methods” | A IEd

Setting clusters number for kmeans method 3
Step 6. Select feature selection algorithm.

Feature selection

Feature selection methods Information Gain

50

Step 7. Dimension reduction algorithm.
Dimension reduction

Dimension reduction methods: PCA

Step 8. Select machine learning algorithm and set the parameters for the machine learning
algorithm. If more than one machine learning algorithms are selected, iLearnWeb will build a
model for each of the algorithm and identify the model with the best predictive performance. If the
“Ensemble learning” button is selected, the iLearnWeb will calculate and report the performance
for all possible combinations of the selected algorithms through a logistic regression method and
return the machine learning algorithm combination that achieves the best performance.

Model construction & evaluation

IMachine learning algorithm selection | m ﬂ I

(one or more algorithms can be selected)

SVM kerel: rbf v cost: gamma: l:l

RF tree number: 100

Evaluation strategy

Ensemble learning? |:|

At last, click 'Submit' to calculate the descriptors and run the selected clustering, feature selection
and machine learning algorithms.

Step 9. Waiting for your result.

iLearnWeb Server Help Job list Contact

iLearn, a Python Toolkit and Web Server Integrating the Functionality of Feature Calculation/Extraction, Clustering, Feature Normalization, Feature Selection, Model
Construction for Classification and Result Visualization for DNA, RNA and Protein Sequences.

Job detatils:
Job ID: 20180911004123_HtjizANz
Number of sequences: 300
Submited time: 2018-09-11 00:41:23
Status: .

The job has been submitted, please waitting...

Backend computation is powered by our iLearn model

51

iFeature-in-oneWeb Job Result Detatils:

Job ID:

MNumber of training sequences:
Number of testing sequences:
Descriptor method:

Training codings:
View all with format

Testing codings:

View all with format
Feature selection method:

The top ranked features:
View all ranked features

Dimension reduction method:

Dimension reduced features:
View all

Dimension reduction plot(left - 2d
plot, right - 3d plot):

20180701234038_DKZGQVUZ

4200
836

binary

.
ATIG2IB40.1_532
ATHG44000.1_478
ATIGORTTO.1_2068
ATIG00845.1_568

1

I

]
ATI000TR0_1772
ATIONBIZ 1_443

ATIGTTE0.1 1523
ATIGH4000.1_2242
0

CHi2

=1
2
23
4

label BINARYF1 BINARYF2 BINARYF] BINARY F4 BINARY FS BINARY FE

1 o o o Q a
o o 1 L 1 L]
1 L L L] L 1
1 L] L] o o 1
BINARY F2 BINARY F4 BINARY FE
L o 1 o L L
L L Ll 1 L 1
a L] 1 o [L]
1 L] [[L] [}
feature
0410
@1464
82810
E2 &I
87309
pat

<1 BIBETIHA0IMEETY
-1 STISAITZET142333
0.41004200145840853
-1.278438070001 2270

Q674885 14TEIOTTON

0013317308852898218
-0 DOTREREIITETA420Y
1. 407722448048383
0 ICETORIMITONTT

0 ATTEASTO0MEIETOS

g0

-1

=2

52

BINARY FT BINARY F8

1 0
o o
o (]
o L]

0 [
1 [
Q 1
po2

BINARY FS BINARY F10 BINARY F11

1

?

Machine leaming algorithm combination with best

performance: DM
Fold Sensitivity Specificity Accuracy MCC Recall Precision F1-score Cute
1 075 095 0.85 0.7144345083117603 0.75 0.9375 0.8333333333333324 0.5
Evaluation metrics: 2 08 0.85 0.875 07509392614826383 09 0.8571428571428571 0.87804878048780498 05
3 08 08 085 07035264706814485 09 0.8181818181818182 0.8571428571428571 05 _

3

ROC(left) & PRC(right) Curves for training data:
Cross-validation scores

)
B
o
o 0
PR
7 L
- 1
| P —1,
i ! -~ L
ROC(left) & PRC({right) Curves for independent data: 2 "* o goe T
Independent scores § e é
ot o4
o . o
oc ase) = .

Download all generated files: Click to download all generated files

After a few seconds, the result should displayed in the result page. For each job, iLearnWeb will
generate a job ID, your calculation result will be stored for a week. With a week, you can query
your result by searching your job ID.

7. 11. Summary

In summary, iLearn has been extensively benchmarked to guarantee correctness of computations,
and was deliberately designed to ensure workflow efficiency. To the best of our knowledge, this is
the first universal toolkit for integrated feature calculation, clustering, selection analysis, model
construction and result visualization. We will integrate more analysis, clustering and machine
learning algorithms to enable interactive analysis and machine learning-based modeling in future
work. It is anticipated that iLearn will be widely used as a powerful tool in bioinformatics,
computational biology, systems biology and proteome research.

12. Acknowledgments

53

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

13. References

Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T.T., Wang, Y., Webb, G.I., Smith, A.L., Daly,
R.J., Chou, K.C. et al. (2018) iFeature: a Python package and web server for features extraction and
selection from protein and peptide sequences. Bioinformatics, 34, 2499-2502.

Noble, W.S., Kuehn, S., Thurman, R., Yu, M. and Stamatoyannopoulos, J. (2005) Predicting the in
vivo signature of human gene regulatory sequences. Bioinformatics, 21 Suppl 1, 1338-343.

Lee, D., Karchin, R. and Beer, M.A. (2011) Discriminative prediction of mammalian enhancers
from DNA sequence. Genome Res, 21, 2167-2180.

Gupta, S., Dennis, J., Thurman, R.E., Kingston, R., Stamatoyannopoulos, J.A. and Noble, W.S.
(2008) Predicting human nucleosome occupancy from primary sequence. PLoS Comput Biol, 4,
€1000134.

Chen, W., Tran, H., Liang, Z., Lin, H. and Zhang, L. (2015) Identification and analysis of the
N(6)-methyladenosine in the Saccharomyces cerevisiae transcriptome. Sci Rep, 5, 13859.

He, W.,, Jia, C., Duan, Y. and Zou, Q. (2018) 70ProPred: a predictor for discovering sigma70
promoters based on combining multiple features. BMC Syst Biol, 12, 44.

He, W., Jia, C. and Zou, Q. (2018) 4mCPred: Machine Learning Methods for DNA
N4-methylcytosine sites Prediction. Bioinformatics.

Nair, A.S. and Sreenadhan, S.P. (2006) A coding measure scheme employing electron-ion
interaction pseudopotential (EIIP). Bioinformation, 1, 197-202.

Liu, B., Liu, F., Fang, L., Wang, X. and Chou, K.C. (2015) repDNA: a Python package to generate
various modes of feature vectors for DNA sequences by incorporating user-defined
physicochemical properties and sequence-order effects. Bioinformatics, 31, 1307-1309.

Chen, W., Feng, PM., Lin, H. and Chou, K.C. (2013) iRSpot-PseDNC: identify recombination
spots with pseudo dinucleotide composition. Nucleic Acids Res, 41, e68.

Guo, S.H., Deng, E.Z., Xu, L.Q., Ding, H., Lin, H., Chen, W. and Chou, K.C. (2014) iNuc-PseKNC:
a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple
nucleotide composition. Bioinformatics, 30, 1522-1529.

Chen, W., Lei, T.Y., Jin, D.C., Lin, H. and Chou, K.C. (2014) PseKNC: a flexible web server for
generating pseudo K-tuple nucleotide composition. Anal Biochem, 456, 53-60.

Qiu, WR., Xiao, X. and Chou, K.C. (2014) iRSpot-TNCPseAAC: identify recombination spots
with trinucleotide composition and pseudo amino acid components. Int J Mol Sci, 15, 1746-1766.
Bhasin, M. and Raghava, G.P. (2004) Classification of nuclear receptors based on amino acid
composition and dipeptide composition. J Biol Chem, 279, 23262-23266.

Chen, K., Jiang, Y., Du, L. and Kurgan, L. (2009) Prediction of integral membrane protein type by
collocated hydrophobic amino acid pairs. J Comput Chem, 30, 163-172.

Chen, K., Kurgan, L. and Rahbari, M. (2007) Prediction of protein crystallization using collocation
of amino acid pairs. Biochem Biophys Res Commun, 355, 764-769.

Chen, K., Kurgan, L.A. and Ruan, J. (2007) Prediction of flexible/rigid regions from protein
sequences using k-spaced amino acid pairs. BMC Struct Biol, 7, 25.

Chen, K., Kurgan, L.A. and Ruan, J. (2008) Prediction of protein structural class using novel
evolutionary collocation-based sequence representation. J Comput Chem, 29, 1596-1604.

Lee, T.Y., Lin, Z.Q., Hsieh, S.J., Bretana, N.A. and Lu, C.T. (2011) Exploiting maximal dependence
decomposition to identify conserved motifs from a group of aligned signal sequences.

54

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Bioinformatics, 27, 1780-1787.

Chen, Z., Zhou, Y., Song, J. and Zhang, Z. (2013) hCKSAAP UbSite: improved prediction of
human ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta,
1834, 1461-1467.

Chen, Z., Chen, Y.Z., Wang, X.F., Wang, C., Yan, R.X. and Zhang, Z. (2011) Prediction of
ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS One, 6, €22930.
Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. J Protein Chem, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence
hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation:
an example from an Amerindian tribal population. Am J Phys Anthropol, 129, 121-131.

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T. and Kanehisa, M.
(2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res, 36,
D202-205.

Xiao, N., Cao, D.S., Zhu, M.F. and Xu, Q.S. (2015) protr/ProtrWeb: R package and web server for
generating various numerical representation schemes of protein sequences. Bioinformatics, 31,
1857-1859.

Dubchak, 1., Muchnik, I., Holbrook, S.R. and Kim, S.H. (1995) Prediction of protein folding class
using global description of amino acid sequence. Proc Natl Acad Sci U S A, 92, 8700-8704.
Dubchak, I., Muchnik, I., Mayor, C., Dralyuk, I. and Kim, S.H. (1999) Recognition of a protein
fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins, 35,
401-407.

Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, X. and Chen, Y.Z. (2003) SVM-Prot: Web-based support vector
machine software for functional classification of a protein from its primary sequence. Nucleic Acids
Res, 31, 3692-3697.

Cai, C.Z., Han, L.Y,, Ji, Z.L. and Chen, Y.Z. (2004) Enzyme family classification by support vector
machines. Proteins, 55, 66-76.

Han, L.Y., Cai, C.Z., Lo, S.L., Chung, M.C. and Chen, Y.Z. (2004) Prediction of RNA-binding
proteins from primary sequence by a support vector machine approach. RN4, 10, 355-368.

Tomii, K. and Kanehisa, M. (1996) Analysis of amino acid indices and mutation matrices for
sequence comparison and structure prediction of proteins. Protein Eng, 9, 27-36.

Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., Li, Y. and Jiang, H. (2007) Predicting
protein-protein interactions based only on sequences information. Proc Natl Acad Sci U S A, 104,
4337-4341.

Chou, K.C. (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily
classes. Bioinformatics, 21, 10-19.

Chou, K.C. (2001) Prediction of protein cellular attributes using pseudo-amino acid composition.
Proteins, 43, 246-255.

Chen, X., Qiu, J.D., Shi, S.P., Suo, S.B., Huang, S.Y. and Liang, R.P. (2013) Incorporating key
position and amino acid residue features to identify general and species-specific Ubiquitin
conjugation sites. Bioinformatics, 29, 1614-1622.

Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48, 443-453.

55

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Cai, Y., Huang, T., Hu, L., Shi, X., Xie, L. and Li, Y. (2012) Prediction of lysine ubiquitination with
mRMR feature selection and analysis. Amino Acids, 42, 1387-1395.

Radivojac, P., Vacic, V., Haynes, C., Cocklin, R.R., Mohan, A., Heyen, J.W., Goebl, M.G. and
Iakoucheva, L.M. (2010) Identification, analysis, and prediction of protein ubiquitination sites.
Proteins, 78, 365-380.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J.
(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res, 25, 3389-3402.

Tung, C.W. and Ho, S.Y. (2008) Computational identification of ubiquitylation sites from protein
sequences. BMC Bioinformatics, 9, 310.

Lee, T.Y., Chen, S.A., Hung, H.Y. and Ou, Y.Y. (2011) Incorporating distant sequence features and
radial basis function networks to identify ubiquitin conjugation sites. PLoS One, 6, ¢17331.

Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring
matrices. J Mol Biol, 292, 195-202.

Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K. and Obradovic, Z. (2006) Length-dependent
prediction of protein intrinsic disorder. BMC Bioinformatics, 7, 208.

Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P. and Dunker, A.K. (2005) Exploiting
heterogeneous sequence properties improves prediction of protein disorder. Proteins, 61 Suppl 7,
176-182.

Liu, B., Liu, F., Wang, X., Chen, J., Fang, L. and Chou, K.C. (2015) Pse-in-One: a web server for
generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic
Acids Res, 43, W65-71.

Faraggi, E., Yang, Y., Zhang, S. and Zhou, Y. (2009) Predicting continuous local structure and the
effect of its substitution for secondary structure in fragment-free protein structure prediction.
Structure, 17, 1515-1527.

Heffernan, R., Dehzangi, A., Lyons, J., Paliwal, K., Sharma, A., Wang, J., Sattar, A., Zhou, Y. and
Yang, Y. (2016) Highly accurate sequence-based prediction of half-sphere exposures of amino acid
residues in proteins. Bioinformatics, 32, 843-849.

Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J., Sattar, A., Yang, Y. and
Zhou, Y. (2015) Improving prediction of secondary structure, local backbone angles, and solvent
accessible surface area of proteins by iterative deep learning. Sci Rep, 5, 11476.

Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M. and Wold, S. (1998) New chemical
descriptors relevant for the design of biologically active peptides. A multivariate characterization of
87 amino acids. J Med Chem, 41, 2481-2491.

Chen, Y.Z., Chen, Z., Gong, Y.A. and Ying, G. (2012) SUMOhydro: a novel method for the
prediction of sumoylation sites based on hydrophobic properties. PLoS One, 7, €39195.

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999) Data clustering: A review. Acm Comput Surv, 31,
264-323.

Rokach, L. and Maimon, O. (2005) In Maimon, O. and Rokach, L. (eds.), Data Mining and
Knowledge Discovery Handbook. Springer US, Boston, MA, pp. 321-352.

Jain, A.K. (2010) Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31,
651-666.

Frey, B.J. and Dueck, D. (2007) Clustering by passing messages between data points. Science, 315,
972-976.

56

56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Cheng, Y.Z. (1995) Mean Shift, Mode Seeking, and Clustering. leee T Pattern Anal, 17, 790-799.
Ester, M., Kriegel, H.-P., #246, Sander, r. and Xu, X. (1996), Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining. AAAI Press, Portland,
Oregon, pp. 226-231.

Chen, J., Guo, M., Wang, X. and Liu, B. (2018) A comprehensive review and comparison of
different computational methods for protein remote homology detection. Brief Bioinform, 19,
231-244.

Pearson, K. (1901) LIII. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559-572.

Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet allocation. Journal of Machine
Learning Research, 3, 993-1022.

Vapnik, V.N. (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc.
Vapnik, V.N. (1999) An overview of statistical learning theory. /[EEE Transactions on Neural
Networks, 10, 988-999.

Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.

Li, Y., Wang, M., Wang, H., Tan, H., Zhang, Z., Webb, G.I. and Song, J. (2014) Accurate in silico
identification of species-specific acetylation sites by integrating protein sequence-derived and
functional features. Sci Rep, 4, 5765.

Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) iSuc-PseOpt: Identifying lysine
succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components
and optimizing imbalanced training dataset. Anal Biochem, 497, 48-56.

Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) pSuc-Lys: Predict lysine succinylation sites
in proteins with PseAAC and ensemble random forest approach. J Theor Biol, 394, 223-230.

Hasan, M.M., Khatun, M.S., Mollah, M.N.H., Yong, C. and Guo, D. (2017) A systematic
identification of species-specific protein succinylation sites using joint element features information.
Int J Nanomedicine, 12, 6303-6315.

Wang, S.-C. (2003), Interdisciplinary Computing in Java Programming. Springer US, Boston, MA,
pp. 81-100.

Song, J., Li, F.,, Leier, A., Marquez-Lago, T.T., Akutsu, T., Haffari, G., Chou, K.C., Webb, G.I., Pike,
R.N. and Hancock, J. (2018) PROSPERous: high-throughput prediction of substrate cleavage sites
for 90 proteases with improved accuracy. Bioinformatics, 34, 684-687.

Li, F., Li, C., Marquez-Lago, T.T., Leier, A., Akutsu, T., Purcell, A.W., Smith, A.I., Lithgow, T.,
Daly, R.J., Song, J. ef al. (2018) Quokka: a comprehensive tool for rapid and accurate prediction of
kinase family-specific phosphorylation sites in the human proteome. Bioinformatics.

Hou, T., Zheng, G., Zhang, P., Jia, J., Li, J., Xie, L., Wei, C. and Li, Y. (2014) LAceP: lysine
acetylation site prediction using logistic regression classifiers. PLoS One, 9, €89575.

Chen, Y.Z., Tang, Y.R., Sheng, Z.Y. and Zhang, Z. (2008) Prediction of mucin-type O-glycosylation
sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC
Bioinformatics, 9, 101.

Chen, Z., Wang, Y., Zhai, Y.F., Song, J. and Zhang, Z. (2013) ZincExplorer: an accurate hybrid
method to improve the prediction of zinc-binding sites from protein sequences. Mol Biosyst, 9,
2213-2222.

Tu, J.V. (1996) Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes. J Clin Epidemiol, 49, 1225-1231.

S7

75.

76.

Liu, B., Yang, F., Huang, D.S. and Chou, K.C. (2018) iPromoter-2L: a two-layer predictor for
identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 34, 33-40.
Feng, P.M., Chen, W., Lin, H. and Chou, K.C. (2013) iHSP-PseRAAAC: Identifying the heat shock
protein families using pseudo reduced amino acid alphabet composition. Anal Biochem, 442,
118-125.

58

